Showing 3 results for Soft Computing
A. N. Khan, R. B. Magar, H. S. Chore,
Volume 8, Issue 2 (8-2018)
Abstract
The use of supplementary cementing materials is gradually increasing due to technical, economical, and environmental benefits. Supplementary cementitious materials (SCM) are most commonly used in producing ready mixed concrete (RMC). A quantitative understanding of the efficiency of SCMs as a mineral admixture in concrete is essential for its effective utilisation. The performance and effective utilization of various SCMs can be possible to analyze, using the concept of the efficiency factor (k-value). This study describes the overview of various studies carried out on the efficiency factor of SCMs. Also, it is an effort directed towards a specific understanding of the efficiency of SCMs in concrete. Further it includes an overview of artificial neural network (ANN) for the prediction of the efficiency factor of SCMs in concrete. It is found that The model generated through ANN provided a tool to calculate efficiency factor (k) and capture the effects of different parameters such as, water-binder ratio; cement dosage; percentage replacement of SCMs; and curing age.
Dr. V. Goodarzimehr, Dr. N. Fanaie, Dr. S. Talatahari,
Volume 15, Issue 1 (1-2025)
Abstract
In this study, the Improved Material Generation Algorithm (IMGA) is proposed to optimize the shape and size of structures. The original Material Generation Algorithm (MGA) introduced an optimization model inspired by the high-level and fundamental characteristics of material chemistry, particularly the configuration of compounds and chemical reactions for generating new materials. MGA uses a Gaussian normal distribution to produce new combinations. To enhance MGA for adapting truss structures, a new technique called Random Chaotic (RC) is proposed. RC increases the speed of convergence and helps escape local optima. To validate the proposed method, several truss structures, including a 37-bar truss bridge, a 52-bar dome, a 72-bar truss, a 120-bar dome, and a 200-bar planar structure, are optimized under natural frequency constraints. Optimizing the shape and size of structures under natural frequency constraints is a significant challenge due to its complexity. Choosing the frequency as a constraint prevents resonance in the structure, which can lead to large deformations and structural failure. Reducing the vibration amplitude of the structure decreases tension and deflection. Consequently, the weight of the structure can be minimized while keeping the frequencies within the permissible range. To demonstrate the superiority of IMGA, its results are compared with those of other state-of-the-art metaheuristic methods. The results show that IMGA significantly improves both exploitation and exploration.
M. Shahrouzi, M. Rashidi-Moghaddam,
Volume 15, Issue 1 (1-2025)
Abstract
Clustering is a well-known solution to deal with complex database features as an unsupervised machine learning technique. One of its practical applications is the selection of non-similar earthquakes for consequent analysis of structural models. In the present work, appropriate clustering of seismic data is searched via optimization. Silhouette value is penalized and used to define the performance objective. A stochastic search algorithm is combined with a greedy search to solve the problem for distinct sets of near–field and far-field ground motion records. The concept of coherency is borrowed from optics to propose a coherency metric for earthquake signals before and after being filtered by structural models. It is then evaluated for various cases of structural response-to-record and response-to-response comparisons. According to the results the proposed coherency detection procedure performs well; confirmed by distinguished structural response spectra between different clusters.