Showing 5 results for Truss Structures.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini,
Volume 8, Issue 3 (10-2018)
Abstract
Vibrating particles system (VPS) is a new meta-heuristic algorithm based on the free vibration of freedom system’ single degree with viscous damping. In this algorithm, each agent gradually approach to its equilibrium position; new agents are generated according to current agents and a historically best position. Enhanced vibrating particles system (EVPS) employs a new alternative procedure to enhance the performance of the VPS algorithm. Two different truss structures are investigated to demonstrate the performance of the VPS and EVPS weight optimization of structures.
A. Kaveh, K. Biabani Hamedani, M. Kamalinejad,
Volume 11, Issue 4 (11-2021)
Abstract
The arithmetic optimization algorithm (AOA) is a recently developed metaheuristic optimization algorithm that simulates the distribution characteristics of the four basic arithmetic operations (i.e., addition, subtraction, multiplication, and division) and has been successfully applied to solve some optimization problems. However, the AOA suffers from poor exploration and prematurely converges to non-optimal solutions, especially when dealing with multi-dimensional optimization problems. More recently, in order to overcome the shortcomings of the original AOA, an improved version of AOA, named IAOA, has been proposed and successfully applied to discrete structural optimization problems. Compared to the original AOA, two major improvements have been made in IAOA: (1) The original formulation of the AOA is modified to enhance the exploration and exploitation capabilities; (2) The IAOA requires fewer algorithm-specific parameters compared with the original AOA, which makes it easy to be implemented. In this paper, IAOA is applied to the optimal design of large-scale dome-like truss structures with multiple frequency constraints. To the best of our knowledge, this is the first time that IAOA is applied to structural optimization problems with frequency constraints. Three benchmark dome-shaped truss optimization problems with frequency constraints are investigated to demonstrate the efficiency and robustness of the IAOA. Experimental results indicate that IAOA significantly outperforms the original AOA and achieves results comparable or superior to other state-of-the-art algorithms.
M. Shahrouzi, R. Jafari,
Volume 12, Issue 2 (4-2022)
Abstract
Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number of investigators as a powerful meta-heuristic algorithm. Several cases of penalty handling techniques are offered and studied using either maximum or summation of constraint violations as well as their combinations. Consequently, the most successive sequence, is identified for the treated continuous and discrete structural examples. Such a dynamic constraint handling is an affordable generalized solution for structural sizing design by iterative population-based algorithms.
A. Kaveh, S. M. Hosseini,
Volume 12, Issue 3 (4-2022)
Abstract
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold (DE-MEDT) metaheuristic algorithm is applied to solve the discrete and continuous optimization problems of the truss structures subject to multiple loading conditions and design constraints. DE-MEDT algorithm is a recently proposed metaheuristic developed based on a physical phenomenon called Doppler Effect (DE) with some idealized rules and a mechanism called Mean Euclidian Distance Threshold (MEDT). The efficiency of the DE-MEDT algorithm is evaluated by optimizing five large-scale truss structures with continuous and discrete variables. Comparing the results found by the DE-MEDT algorithm with those of other existing metaheuristics reveals that the DE-MEDT optimizer is a suitable optimization technique for discrete and continuous design optimization of large-scale truss structures.
A. Yadbayza-Moghaddam, S. Gholizadeh,
Volume 14, Issue 1 (1-2024)
Abstract
The primary objective of this paper is to propose a novel technique for hybridizing various metaheuristic algorithms to optimize the size of discrete structures. To accomplish this goal, two well-known metaheuristic algorithms, particle swarm optimization (PSO) and enhanced colliding bodies optimization (ECBO) are hybridized to propose a new algorithm called hybrid PSO-ECBO (HPE) algorithm. The performance of the new HPE algorithm is investigated in solving the challenging structural optimization problems of discrete steel trusses and an improvement in results has been achieved. The numerical results demonstrate the superiority of the proposed HPE algorithm over the original versions of PSO, ECBO, and some other algorithms in the literature.