Volume 12, Issue 4 (12-2024)                   JRIA 2024, 12(4): 0-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

salimi gargari R, mofidi S M, Sanaieian H. Optimization of Building Envelope parameters Design toward Energy Conservation (Contemporary Buildings in Tehran). JRIA 2024; 12 (4)
URL: http://jria.iust.ac.ir/article-1-1779-en.html
Abstract:   (661 Views)
Given the crucial role of the building envelope as a protective shell and its impact on energy consumption, proper façade design is of significant importance in the building design process. Considering the challenges and time-consuming nature of traditional optimization methods, it is essential to provide an appropriate method for designers to use in the early stages of design. The building's exterior envelope, which includes opaque and transparent components, protects the interior space and improves external climatic conditions. This research examines the parameters affecting building façades on thermal behavior and energy consumption. Initially, through a systematic review of sources and similar studies, the physical parameters of façades are analyzed, and then the various façade types in District 15 are examined. After conducting studies, the GIS map of the area is precisely analyzed, and common façade types are extracted through field surveys. The parameters affecting the building envelope, including wall layering, façade treatment, and insulation, and their impact on heating and cooling energy consumption, are studied and analyzed. Subsequently, the effect of the window-to-wall ratio on energy consumption is investigated. The results obtained from simulations are validated through field studies.
According to the results, there is a direct relationship between the thermal conductivity of the wall and energy consumption. In the optimal case, compared to the worst case, there is a difference of approximately 38.43 kWh per square meter in heating energy and 1.48 kWh per square meter in cooling energy consumption. Given the electricity consumption for cooling, this amount is particularly significant.
     
Type of Study: Research | Subject: General
Received: 2024/10/9 | Accepted: 2024/11/26 | Published: 2024/12/28

References
1. Acar, U., Kaska, O., & Tokgoz, N. (2021). Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey. Journal of Building Engineering, 42, 102499. [DOI:10.1016/j.jobe.2021.102499]
2. Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia, 91, 269-275. https://doi.org/10.1016/j.egypro.2016.06.218 [DOI:https://doi.org/10.1016/j.egypro.2016.06.218]
3. Al-Homoud, M. S. (2005). A Systematic Approach for the Thermal Design Optimization of Building Envelopes. Journal of Building Physics, 29(2), 95-119. [DOI:10.1177/1744259105056267]
4. Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. https://doi.org/10.1016/j.jobe.2020.102122 [DOI:https://doi.org/10.1016/j.jobe.2020.102122]
5. Azami, A., & Sevinç, H. (2021). The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Building and Environment, 199, 107856. https://doi.org/10.1016/j.buildenv.2021.107856 [DOI:https://doi.org/10.1016/j.buildenv.2021.107856]
6. Butt, A. A., de Vries, S. B., Loonen, R. C. G. M., Hensen, J. L. M., Stuiver, A., van den Ham, J. E. J., & Erich, B. S. J. F. (2021). Investigating the energy saving potential of thermochromic coatings on building envelopes. Applied Energy, 291, 116788. https://doi.org/10.1016/j.apenergy.2021.116788 [DOI:https://doi.org/10.1016/j.apenergy.2021.116788]
7. Caldas, L. G., & Norford, L. K. (2002). A design optimization tool based on a genetic algorithm. Automation in Construction, 11(2), 173-184. https://doi.org/10.1016/S0926-5805(00)00096-0 [DOI:https://doi.org/10.1016/S0926-5805(00)00096-0]
8. DesignBuilder. (2009). DesignBuilder software User manual. In.
9. Fan, Y., & Xia, X. (2017). A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Applied Energy, 189, 327-335. [DOI:10.1016/j.apenergy.2016.12.077]
10. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030-2036. https://doi.org/10.1016/j.renene.2009.02.016 [DOI:https://doi.org/10.1016/j.renene.2009.02.016]
11. Huang, J., Wang, S., Teng, F., & Feng, W. (2021). Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings. Energy and Buildings, 247, 111103. https://doi.org/10.1016/j.enbuild.2021.111103 [DOI:https://doi.org/10.1016/j.enbuild.2021.111103]
12. Iwaro, J., & Mwasha, A. (2013). The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. International Journal of Sustainable Built Environment, 2(2), 153-171. https://doi.org/10.1016/j.ijsbe.2014.03.002 [DOI:https://doi.org/10.1016/j.ijsbe.2014.03.002]
13. Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522-531. https://doi.org/10.1016/j.renene.2012.07.029 [DOI:https://doi.org/10.1016/j.renene.2012.07.029]
14. Li, H., & Wang, S. (2020). Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties. Applied Energy, 265, 114779. https://doi.org/10.1016/j.apenergy.2020.114779 [DOI:https://doi.org/10.1016/j.apenergy.2020.114779]
15. Luo, M., Arens, E., Zhang, H., Ghahramani, A., & Wang, Z. (2018). Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 143, 206-216. https://doi.org/10.1016/j.buildenv.2018.07.008 [DOI:https://doi.org/10.1016/j.buildenv.2018.07.008]
16. Mostavi, E., Asadi, S., & Boussaa, D. (2017). Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy, 121, 606-615. https://doi.org/10.1016/j.energy.2017.01.049 [DOI:https://doi.org/10.1016/j.energy.2017.01.049]
17. Nematchoua, M. K., Tchinda, R., & Orosa, J. A. (2014). Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy, 114, 687-699. [DOI:10.1016/j.apenergy.2013.10.036]
18. Sanaieian, H., Tenpierik, M., Linden, K. v. d., Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551-560. https://doi.org/10.1016/j.rser.2014.06.007 [DOI:https://doi.org/10.1016/j.rser.2014.06.007]
19. Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672-681. https://doi.org/10.1016/j.enbuild.2018.07.010 [DOI:https://doi.org/10.1016/j.enbuild.2018.07.010]
20. Acar, U., Kaska, O., & Tokgoz, N. (2021). Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey. Journal of Building Engineering, 42, 102499. [DOI:10.1016/j.jobe.2021.102499]
21. Aelenei, D., Aelenei, L., & Vieira, C. P. (2016). Adaptive Façade: Concept, Applications, Research Questions. Energy Procedia, 91, 269-275. https://doi.org/10.1016/j.egypro.2016.06.218 [DOI:https://doi.org/10.1016/j.egypro.2016.06.218]
22. Al-Homoud, M. S. (2005). A Systematic Approach for the Thermal Design Optimization of Building Envelopes. Journal of Building Physics, 29(2), 95-119. [DOI:10.1177/1744259105056267]
23. Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. https://doi.org/10.1016/j.jobe.2020.102122 [DOI:https://doi.org/10.1016/j.jobe.2020.102122]
24. Azami, A., & Sevinç, H. (2021). The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope. Building and Environment, 199, 107856. https://doi.org/10.1016/j.buildenv.2021.107856 [DOI:https://doi.org/10.1016/j.buildenv.2021.107856]
25. Butt, A. A., de Vries, S. B., Loonen, R. C. G. M., Hensen, J. L. M., Stuiver, A., van den Ham, J. E. J., & Erich, B. S. J. F. (2021). Investigating the energy saving potential of thermochromic coatings on building envelopes. Applied Energy, 291, 116788. https://doi.org/10.1016/j.apenergy.2021.116788 [DOI:https://doi.org/10.1016/j.apenergy.2021.116788]
26. Caldas, L. G., & Norford, L. K. (2002). A design optimization tool based on a genetic algorithm. Automation in Construction, 11(2), 173-184. https://doi.org/10.1016/S0926-5805(00)00096-0 [DOI:https://doi.org/10.1016/S0926-5805(00)00096-0]
27. DesignBuilder. (2009). DesignBuilder software User manual. In.
28. Fan, Y., & Xia, X. (2017). A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance. Applied Energy, 189, 327-335. [DOI:10.1016/j.apenergy.2016.12.077]
29. Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34(9), 2030-2036. https://doi.org/10.1016/j.renene.2009.02.016 [DOI:https://doi.org/10.1016/j.renene.2009.02.016]
30. Huang, J., Wang, S., Teng, F., & Feng, W. (2021). Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings. Energy and Buildings, 247, 111103. https://doi.org/10.1016/j.enbuild.2021.111103 [DOI:https://doi.org/10.1016/j.enbuild.2021.111103]
31. Iwaro, J., & Mwasha, A. (2013). The impact of sustainable building envelope design on building sustainability using Integrated Performance Model. International Journal of Sustainable Built Environment, 2(2), 153-171. https://doi.org/10.1016/j.ijsbe.2014.03.002 [DOI:https://doi.org/10.1016/j.ijsbe.2014.03.002]
32. Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522-531. https://doi.org/10.1016/j.renene.2012.07.029 [DOI:https://doi.org/10.1016/j.renene.2012.07.029]
33. Li, H., & Wang, S. (2020). Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties. Applied Energy, 265, 114779. https://doi.org/10.1016/j.apenergy.2020.114779 [DOI:https://doi.org/10.1016/j.apenergy.2020.114779]
34. Luo, M., Arens, E., Zhang, H., Ghahramani, A., & Wang, Z. (2018). Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 143, 206-216. https://doi.org/10.1016/j.buildenv.2018.07.008 [DOI:https://doi.org/10.1016/j.buildenv.2018.07.008]
35. Mostavi, E., Asadi, S., & Boussaa, D. (2017). Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy, 121, 606-615. https://doi.org/10.1016/j.energy.2017.01.049 [DOI:https://doi.org/10.1016/j.energy.2017.01.049]
36. Nematchoua, M. K., Tchinda, R., & Orosa, J. A. (2014). Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy, 114, 687-699. [DOI:10.1016/j.apenergy.2013.10.036]
37. Sanaieian, H., Tenpierik, M., Linden, K. v. d., Mehdizadeh Seraj, F., & Mofidi Shemrani, S. M. (2014). Review of the impact of urban block form on thermal performance, solar access and ventilation. Renewable and Sustainable Energy Reviews, 38, 551-560. https://doi.org/10.1016/j.rser.2014.06.007 [DOI:https://doi.org/10.1016/j.rser.2014.06.007]
38. Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672-681. https://doi.org/10.1016/j.enbuild.2018.07.010 [DOI:https://doi.org/10.1016/j.enbuild.2018.07.010]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Researches in Islamic Architecture

Designed & Developed by : Yektaweb