Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper, the basic KF-based method is enhanced by incorporating the dynamics of the attack vector into the system state-space model using an observer-based preprocessing stage. The proposed technique not only immunizes the state estimation against cyber-attacks but also effectively handles the issues relevant to the modeling uncertainties and measurement noises/errors. The effectiveness of the proposed approach is demonstrated by detailed mathematical analysis and testing it on two well-known IEEE cyber-physical test systems.
Type of Study:
Research Paper |
Subject:
Phasor Measurement Unit (PMU) Systems Received: 2019/09/25 | Revised: 2020/02/19 | Accepted: 2020/02/28