In this paper, a novel approach based on the Thévenin tracing is presented to modified conventional impedance-based out-of-step (OOS) protection. In conventional approach, the OOS detection is done by measuring positive sequence impedance. However, the measured impedance may be change due to different factors such as capacitor bank switching and reactive power compensators that it can cause the relay to malfunction. In this paper, first, an on-line Thévenin equivalent (TE) approach based on the recursive least square (RLS) is presented. Then, a protection function is developed based on online network Thévenin equivalent parameters to correct the measured impedance path. The main feature of this method is the use of local voltage and current measurements for Thévenin equivalent estimation and OOS protection. The performance of the proposed method is investigated by simulation of synchronous generator OOS protection function in the presence of a static synchronous compensator (STATCOM). The simulation results show that, STATCOM changes the impedance path and can cause the incorrect diagnosis of OOS relay. Furthermore, the proposed method corrects the impedance path and improves the accuracy of OOS impedance-based function when the STATCOM is installed in system.
Type of Study:
Research Paper |
Subject:
Measurements Received: 2019/11/01 | Revised: 2020/03/20 | Accepted: 2020/04/07