In Press                   Back to the articles list | Back to browse issues page

XML Print


Abstract:   (126 Views)
This document presents the design of a virtual robotic system for the supervision of physical training exercises, to be carried out in a closed environment, which only requires a computer equipment with a web camera. To do this, deep learning algorithms such as convolutional networks and short- and long-term memory networks are used to recognize voice commands and the user's video actions. A predefined dialogue template is used to guide a user's training cycle based on the execution of the exercises: push-ups, abdominal, jump or squat. The contribution of the work focuses on the integration of deep learning techniques to design and personalize virtual robotic assistants for everyday task. The results show a high level of accuracy by the virtual robot both in understanding the audio and in predicting the exercise to be performed, with a final accuracy value of 97.75% and 100%, respectively.
Full-Text [PDF 1331 kb]   (45 Downloads)    
Type of Study: Closed - 2024 Special Issue on Applications of Deep Learning in Electrical and Electronic Engineerin | Subject: Speech Recognition
Received: 2024/08/27 | Revised: 2024/10/31 | Accepted: 2024/10/24

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.