Search published articles



M. Nezhadshahbodaghi, K. Bahmani, M. R. Mosavi, D. Martín,
Volume 19, Issue 2 (6-2023)
Abstract

Today, it can be said that in every field in which timely information is needed, we can use the applications of time-series prediction. In this paper, among so many chaotic systems, the Mackey-Glass and Loranz are chosen. To predict them, Multi-Layer Perceptron Neural Network (MLP NN) trained by a variety of heuristic methods are utilized such as genetic, particle swarm, ant colony, evolutionary strategy algorithms, and population-based incremental learning. Also, in addition to expressed methods, we propose two algorithms of Bio-geography-Based Optimization (BBO) and fuzzy system to predict these chaotic systems. Simulation results show that if the MLP NN is trained based on the proposed meta-heuristic algorithm of BBO, training and testing accuracy will be improved by 28.5% and 51%, respectively. Also, if the presented fuzzy system is utilized to predict the chaotic systems, it outperforms approximately by 98.5% and 91.3% in training and testing accuracy, respectively.

 

Mohamed Hussien Moharam, Aya W. Wafik,
Volume 20, Issue 0 (12-2024)
Abstract

High peak-to-average power ratio (PAPR) has been a major drawback of Filter bank Multicarrier (FBMC) in the 5G system. This research aims to calculate the PAPR reduction associated with the FBMC system. This research uses four techniques to reduce PAPR. They are classical tone reservation (TR). It combines tone reservation with sliding window (SW-TR). It also combines them with active constellation extension (TRACE) and with deep learning (TR-Net). TR-net decreases the greatest PAPR reduction by around 8.6 dB compared to the original value.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.