Search published articles



S. Thangaprakash, A. Krishnan,
Volume 6, Issue 2 (6-2010)
Abstract

New control circuits and algorithms are frequently proposed to control the impedance (Z) source inverter in efficient way with added benefits. As a result, several modified control techniques have been proposed in recent years. Although these techniques are clearly superior to the simple boost control method which was initially proposed along with the Z-source inverter (ZSI), little or conflicting data is available about their merits relating to each other. In this paper, it is shown how the shoot-through periods are inserted in the switching waveforms of the power switches and the performances of them are analyzed based on the operation of ZSI. Simple boost control, maximum boost control, constant boost control and space vector modulation based control methods given in the literature has been illustrated with their control characteristics. A critical investigation on ripples of the impedance source elements, output voltage controllability, output harmonic profile, transient response of the voltage across the impedance source capacitor and voltage stress ratio etc has been presented with the simulation results. The simulation results are experimentally verified in the laboratory with digital signal processors (DSP). DSP coding for the above all control techniques has been generated by interfacing Matlab/Simulink with DSP C6000 tool box and signal processing block set.
S. M. Dehghan, M. Mohamadian, A. Yazdian, A. H. Rajaei, Mr H. Zahedi,
Volume 6, Issue 4 (12-2010)
Abstract

This paper presents a modified nine switch inverter with two inputs and two Z-source networks. This inverter has two DC inputs and two AC outputs. Input DC voltages can be boosted to the required level. Amplitude, frequency and phase of AC output voltages can be controlled, independently. The proposed converter can be used in applications with two unregulated DC sources, which require feeding two independent loads. Compared to the conventional structure, the proposed converter requires reduced number of semiconductor switches hence improved converter reliability and less volume. Performance of the proposed inverter is verified by experimental results.
D. Arab Khaburi, H. Rostami,
Volume 7, Issue 1 (3-2011)
Abstract

This paper presents a method to control both the dc boost and the ac output voltage of Z-source inverter using neural network controllers. The capacitor voltage of Z-source network has been controlled linearly in order to improve the transient response of the dc boost control of the Z-source inverter. The peak value of the line to line ac output voltage is used to control and keep the ac output at its desired value. A modified space vector pulse-width-modulation method is also applied to control the shoot-through duty ratio for boosting dc voltage. This modified method lets the dc voltage stress across the inverter switches be minimized. The neural network control technique is verified by simulation results. The results are compared with that of the traditional PI controller.
C. Nagarajan, M. Madheswaran,
Volume 8, Issue 3 (9-2012)
Abstract

This paper presents a Closed Loop CLL-T (capacitor inductor inductor) Series Parallel Resonant Converter (SPRC) has been simulated and the performance is analysised. A three element CLL-T SPRC working under load independent operation (voltage type and current type load) is presented in this paper. The Steady state Stability Analysis of CLL-T SPRC has been developed using State Space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.
M. Hosseini Abardeh, R. Ghazi,
Volume 11, Issue 1 (3-2015)
Abstract

The matrix converter instability can cause a substantial distortion in the input currents and voltages which leads to the malfunction of the converter. This paper deals with the effects of input filter type, grid inductance, voltage fed to the modulation algorithm and the synchronous rotating digital filter time constant on the stability and performance of the matrix converter. The studies are carried out using eigenvalues of the linearized system and simulations. Two most common schemes for the input filter (LC and RLC) are analyzed. It is shown that by a proper choice of voltage input to the modulation algorithm, structure of the input filter and its parameters, the need for the digital filter for ensuring the stability can be resolved. Moreover, a detailed model of the system considering the switching effects is simulated and the results are used to validate the analytical outcomes. The agreement between simulation and analytical results implies that the system performance is not deteriorated by neglecting the nonlinear switching behavior of the converter. Hence, the eigenvalue analysis of the linearized system can be a proper indicator of the system stability.
M. Oloumi, R. Ghazi, M. Monfared,
Volume 11, Issue 2 (6-2015)
Abstract

This paper provides a detailed comparative study concerning the performance of min-projection strategy (MPS) and model predictive control (MPC) systems to control the three-phase grid connected converters. To do so, first, the converter is modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and its stability criterion is derived as a lower limit on the DC link voltage. Next, the fundamental equations of the MPS to control a VSC are obtained in the stationary reference frame. The mathematical analysis reveals that the MPS is independent of the load, grid, filter and converter parameters. This feature is a great advantage of MPS over the MPC approach. However, the latter is a well-known model-based control technique, has already developed for controlling the VSC in the stationary reference frame. To control the grid connected VSC, both MPS and MPC approaches are simulated in the PSCAD/EMTDC environment. Simulation results illustrate that the MPS is functioning well and is less sensitive to grid and filter inductances as well as the DC link voltage level. However, the MPC approach renders slightly a better performance in the steady state conditions.
A. A. Khodadoost Arani, J. S. Moghani, A. Khoshsaadat, G. B. Gharehpetian,
Volume 12, Issue 2 (6-2016)
Abstract

Multilevel voltage source inverters have several advantages compare to traditional voltage source inverter. These inverters reduce cost, get better voltage waveform and decrease Total Harmonic Distortion (THD) by increasing the levels of output voltage. In this paper Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods are used to find the switching angles for achieving to the minimum THD for output voltage waveform of the Cascaded H-bridge Multi-Level Inverters (MLI). These methods are used for a 27-level inverter for different modulation indices. Result of two methods is identical and in comparison to other methods have the smallest THD. To verify results of two mentioned methods, a simulation using MATLAB/Simulink software is presented.


E. Babaei, Z. Saadatizadeh, S. Laali,
Volume 12, Issue 2 (6-2016)
Abstract

In this paper, a new bidirectional buck-boost dc-dc converter with capability of soft switching and zero input current ripple is proposed. The coupled inductor is used in the proposed converter to eliminate the input current ripple. In the proposed converter, zero voltage switching (ZVS) and zero current switching (ZCS) can be obtained for the main and auxiliary switches, respectively. In addition, the proposed topology is analyzed in all operating modes and all equations of voltage and current for components are obtained. Moreover, the required conditions for soft switching operation and also achieving zero input current ripple are calculated. Finally, the acuracy performance of the proposed converter is reconfirmed through simulation results in EMTDC/PSCAD software program.


S. Laali, E. Babaei, Z. Saadatizadeh,
Volume 12, Issue 3 (9-2016)
Abstract

In this paper, several optimum structures of a cascaded multilevel inverter is proposed. This optimization is based on generation a constant number of output voltage levels by using minimum number of power switches or dc voltage sources or minimum amount of blocked voltage by power switches. In addition, the optimum structure for a constant number of dc voltage sources by using minimum number of power switches is obtained. In these optimizations, all of the presented algorithms to generate a desired sinosuidal waveform of the cascaded multilevel inverter are considered. Then, the proposed optimum topologies are compared with several conventional cascaded multilevel invereters that have been presented in literature. These comparisons are from the number of required power switches, dc voltag sources, variabilty the magnitude of dc voltage source and the value of blocked voltage by switches points of view. The conduction and switching losses of the proposed topologies are calculated. In addition, a 49-level cascaded inverter based on the proposed optimum topologies is designed. Moreover, the designed topologies are compared to each other from the amount of blocked voltage by swithes, the maximum magnitude of output voltage levels and the number of required power electronic devices such as power switches, driver circuits and diodes points of view. Finally, the ability of the optimium topology in generation all voltage levels (even and odd) by using minimum number of power switches is reconfirmed thruogh PSCAD/EMTDC simulation and experimental results on a 49-level inverter.


M. Khalilzadeh, B. Asaei, M. R. Nikzad,
Volume 13, Issue 1 (3-2017)
Abstract

In this paper a novel four-leg interleaved DC-DC boost converter is proposed which is well suitable for fuel cell vehicles (FCV) application. The voltage stress of two switches of this converter is half of the conventional interleaved converters. Therefore, smaller and cheaper switches can be utilized. Also "on" state duration of the two of four switches are reduced in comparison with conventional converter. Furthermore, comparing the losses of the proposed converter to conventional one – which is used in ،Toyota Mirai 2015 – shows a significant loss reduction in full power range. The proposed converter is simulated within an FCV in urban and highway driving cycles using ADVISOR software. The results show that the average power loss of the converter is improved about 32% in urban cycle and about 17% in highway cycle comparing to conventional one.


J. Fallah Ardashir, M. Sabahi, S. H. Hosseini, E. Babaei, G. B. Gharehpetian,
Volume 13, Issue 2 (6-2017)
Abstract

This paper proposes a new single phase transformerless Photovoltaic (PV) inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC) technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.


F. Hasanzad, H. Rastegar, G. B. Gharehpetian, M. Pichan,
Volume 13, Issue 2 (6-2017)
Abstract

Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer) or without it (transformerless). Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC)) through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV), and total harmonic distortion (THD). An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique.


M. Ghani Varzaneh, A. Rajaei, M. Fakhraei,
Volume 13, Issue 3 (9-2017)
Abstract

This paper presents a new structure to provide the ability for power sharing of two Z-source inverters. According to the operation principles of Z-source inverters, only one input source supplies the circuit, which is a limitation particularly for the stand alone systems feeded by limited output power such as photovoltaics and feul cells. Furthermore; if one source fails to supply,  the load can't be supplied. This paper covers those via interconnection of impedance network of two Z-source inverters. The operating principles of the proposed topology for the stand-alone and power sharing conditions are described and the relations are derived. The topology is simulated, which the results verify the theoretical analysis and well performance of the system. 


E. Babaei, T. Ahmadzadeh,
Volume 13, Issue 4 (12-2017)
Abstract

First of all, in this paper, the topology and operation of the three-phase three-level Z-source inverter based on neutral-point-clamped (Z-NPC) are studied. Moreover, different combinations of permissible switching states and control signals are explained for this inverter. In this paper, the topology of the three-phase three-level Z-NPC inverter is extended for an n-level state. Also, a combination of allowed switching states with relevant mathematical equations is presented for the proposed n-level Z-NPC inverter. In comparison with multilevel voltage-source inverters (only voltage-boost capability), the proposed multilevel Z-NPC inverter is a single-stage converter and it has a buck-boost capability of voltage. On the other hand, the control of two-stage converters compared to single-stage converters can be more difficult because of existing more active and passive components. In this paper, two new PWM control methods are also proposed for various multilevel Z-NPC inverters. One advantage of the proposed PWM control methods in comparison with conventional PWM control methods is maintaining the charge balance of the dc-link capacitors in neutral point. The correct performance of the proposed multilevel Z-NPC topology and PWM control methods are verified by the obtained results of analysis and simulations performed in the PSCAD software.


E. Babaei, H. Feyzi, R. Gholizadeh-Roshanagh,
Volume 13, Issue 4 (12-2017)
Abstract

In this paper, a generalized buck-boost Z-H converter based on switched inductors is proposed. This structure consists of a set of series connected switched-inductor cells. The voltage conversion ratio of the proposed structure is adjusted by changing the number of cells and the duty cycle. Like the conventional Z-H converter, the shoot-through switching state and the diode before LC network are eliminated. The proposed converter can provide high voltage gain in low duty cycles. Considering different values for duty cycle, the proposed structure works in two operating zones. In the first operating zone, it works as a buck-boost converter and in the second operating zone, it works as a boost converter. In this paper, a complete analysis of the proposed converter is presented. In order to confirm the accuracy of mathematic calculations, the simulations results by using PSCAD/EMTDC software are given.


M. Pichan, E. Heydari, H. Rastegar,
Volume 13, Issue 4 (12-2017)
Abstract

Distributed generation (DG) will play an important role in future power generation systems, especially in stand-alone applications. Three phase four-leg inverter is a well-known topology which can be used as an interface power converter for DGs. Thanks to the fourth leg to provide the neutral path, the four-leg inverter is able to supply balanced loads as well as unbalanced loads. In this paper, the model of a three phase four-leg inverter with the fourth leg inductor in the αβγ reference frame is investigated thoroughly. Afterward, a decoupled model of the four-leg inverter is adopted to establish the proposed control method. Among non-linear control methods, pole-placement method is a famous solution to ensure fast transient response. Hence, in this paper, a pole-placement method via state feedback is proposed to control the output voltage of the four-leg inverter. Using this method, the transient performance of the system can be adjusted well. On the other hand, to guarantee good performance of the control system under steady state condition, a lead compensator is proposed to be used with the pole-placement method. Therefore, the proposed control system not only can provide fast dynamic response but also, it ensures very low steady state error. To validate the superior performance of the proposed control method, simulation and experimental results under various loading condition are provided based on a DSP-based digital control system.

H. Torkaman, T. Hemmati,
Volume 14, Issue 1 (3-2018)
Abstract

This paper introduces a novel two transistors forward topology employing a z-source to achieve ZVZCS and power transformer resetting for various applications. Comparing with the forward converter, this topology has the advantage of displaying ZCS condition with an added Z-Source and no additional switches when the switches turn on, and that ZVS condition happens when the switches turn off. Duty cycle of the topology can exceed 50 percent. As a result, these converters are suitable for applications with high efficiency. In this paper, structure and properties of the topology will be discussed in details. Then the design principles will be presented. Finally, the benefits aforementioned will be approved in practice through a simple forward converter.

A. Hamidi, A. Ahmadi, S. Karimi,
Volume 14, Issue 1 (3-2018)
Abstract

In AC-DC power conversion, active front end rectifiers offer several advantages over diode rectifiers such as bidirectional power flow capability, sinusoidal input currents and controllable power factor. A digital finite control set model predictive controller based on fixed-point computations of an active front end rectifier with unity displacement of input voltage and current to improve dynamic response has been presented in this paper. Here by using a predictive cost function and fixed-point computations, the optimal switching state to be applied in the next sampling is selected. The low-cost architecture is implemented on a FPGA platform. Designed architecture is constructed based on fixed-point arithmetic with minimal functional units. The control algorithm, which is used in this architecture, is Finite-Set Model Predictive Control (FS-MPC). Compared with other controllers, this controller provides a much better dynamic performance. Finally, in order to evaluate the accuracy of the fixed-point computations several cases for various loading conditions and word lengths are verified.

H. Rezaie, H. Rastegar, M. Pichan,
Volume 14, Issue 1 (3-2018)
Abstract

An inherent problem of single-phase rectifiers is the existence of a pulsating portion in the input power, which pulsates at twice the grid frequency. If this pulsating power is transferred to the DC-link, it causes a significant amount of second-order harmonic at the output voltage. Since in many applications, such a high level of DC oscillation is not acceptable, so the pulsating power must be effectively filtered. A convenient solution to eliminate the output voltage oscillations is to use a capacitor with a relatively high capacity at the rectifier output. Due to the fact that the high capacity capacitors for this application usually have a short lifetime and occupy a lot of space, this solution cannot be considered as a proper one. In this paper, a new active method with the minimum of current and voltage stress is proposed to effectively eliminate the pulsating power and significantly reduce the required capacitance of the output filter. The proposed method is able to reduce the volume of the converter and increase its reliability and power density. The validity and effectiveness of the proposed method are confirmed by extensive simulations in the MATLAB/Simulink.

A. Safari, H. Ardi,
Volume 14, Issue 1 (3-2018)
Abstract

In this paper, sliding mode control (SMC) for a bidirectional buck/boost DC-DC converter (BDC) with constant frequency in continuous conduction mode (CCM) is discussed. Since the converter is a high-order converter, the reduced-order sliding manifold is exploited. Because of right-half-plan zero (RHPZ) in the converter’s duty ratio to output voltage transfer function, sliding mode current controller is used. This controller benefits from various advantages such as fast dynamic response, robustness, stable and small variation of the settling time over a wide range of operation conditions. Because the converter operates in both step-down and step-up modes, two sliding manifold is derived for each mode. The existence and stability conditions are analyzed for both SMC in step-down and step-up modes. Finally, Simulation results are also provided to justify the feasibility of the controller using MATLAB/Simulink.


Page 1 from 2    
First
Previous
1
 

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.