Search published articles



M. Shahnazari, A. Vahedi,
Volume 5, Issue 4 (12-2009)
Abstract

An accurate average value model of synchronous machine-rectifier system considering the effect of stator resistance is derived in this paper. A proper voltage-behind-reactance synchronous machine model without any approximations is used for the generator that allows effective calculation of commutation displacement angle. All rectification modes of the rectifier are studied. A detailed switching model is implemented and validated against experimental measurements. The described average value model is evaluated through comparison of detailed simulation results and average model in time domain.
A. Damaki Aliabad, M. Mirsalim, M. Fazli Aghdaei,
Volume 6, Issue 1 (3-2010)
Abstract

The air-gap of electrical machines may become non-uniform due to low accuracy of the manufacturing machinery, in assembling processes, or by aging. Detection and monitoring of this phenomenon is very important and of interest. There are several methods to model non-uniform air-gaps and to detect them by monitoring systems. One of the most widely used methods is by the analysis of the line currents. In this paper a new, simple and comprehensive method is presented to model and detect non-uniform air-gaps in synchronous generators with skewed rotors. The influence of non-uniform air-gaps on the harmonics of the induced voltage of the stator is investigated by the proposed method. Simulations are performed for three cases: uniform air-gap, static rotor eccentricity, and stator ovality in a two phase generator. The experimental results are also presented. The good correspondence between the simulation and the experimental results clearly validates the theoretical findings put forward in this paper.
F. Faghihi , H. Heydari,
Volume 6, Issue 1 (3-2010)
Abstract

Stray magnetic field is one of the main issues in design of transformers, since it causes non-ideal behavior of transformers. One of the techniques is usually adopted to mitigate the unwanted stray magnetic field is the use of auxiliary windings creating a magnetic field opposite to the incident one giving rise to the reduction of the total magnetic fields. This paper presents a new mathematical proof for optimized parameters such as connection resistance and leakage inductance of the auxiliary windings based on state equations. Some numerical examples for various types of practical transformers are given to demonstrate the validity of the presented mathematical proof and a comparison is made with the results of transformers behavior which is obtained with the help of finite element method. The proposed method is successfully implemented on three different types of transformers: current injection transformer, pulse transformer and superconductor transformers.
A. Ebadi, M. Mirzaie, S. A. Gholamian,
Volume 8, Issue 2 (6-2012)
Abstract

Induction motor is the most popular load in the industry, it is very important to study about the effects of voltage quality on induction motor performance. One of the most important voltage quality problems in power system is voltage unbalance. This paper evaluates and compares two methods including finite element method (FEM) and equivalent electrical circuit simulation for investigation of the effects of voltage unbalance conditions on the performance of a three- phase induction motor. For this purpose, a threephase squirrel cage induction motor is simulated using Finite Element Method and equivalent electrical circuit parameters of the FEM model is estimated by genetic algorithm. Then, some unbalanced voltages are applied on the FEM model of the Motor and the resulted power and losses are compared with calculated values using equivalent electrical circuit simulation in same voltage conditions.
S. M. Mirimani, A. Vahedi, M. R. Ghazanchaei, A. Baktash,
Volume 9, Issue 2 (6-2013)
Abstract

Hysteresis motor is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials to make torque. There are different methods to model this kind of motor and take into account the magnetic hysteresis characteristic of the rotor hysteresis ring. In this investigation the application of complex permeability concept is implemented to model the hysteresis loop and the hysteresis loop in inclined ellipse shape is adopted. To the best knowledge of the authors, this has not been studied before. Based on this concept, simulation of hysteresis motor in conventional configuration is done in order to obtain the output values of motor using 3D Finite Element Model (FEM). This 3D finite element model has high level accuracy and gives better insight of motor performance. Meanwhile, in order to validate the simulation results an experimental set up is provided and the output values of typical motor are measured. It is shown that there is a good agreement between experimental and simulation results. i, Abolfazl Vahedi, , r, avahedi@iust.ac.ir(Corresponding author), ,
A. Darabi, M. Yousefisefat, M. Nikkhoo,
Volume 10, Issue 1 (3-2014)
Abstract

Quadrature-axis reactance for various reasons comes into account as one of the most important parameters of salient pole synchronous machine. There are several common standard methods for measuring this parameter that also have been explained with some details in the standards, scientific papers and text books. One of these methods is the maximum lagging current test that is done simply at no-load, having a three phase voltage source and applying very low power even for a high power machine. How this experiment is done is described at some references such as the books related to electrical machinery. This paper presents a detail analysis and description of the test and some simulation results regarding the performance of the machine during pole-slipping. It is shown when the reversal field current is increased very slowly, the transient of the pole-slipping commences at load angle equal to 45 degrees or by a better language at 225 instead of zero which is the common opinion of almost all the previously published literatures. In this paper, a realistically developed analysis of the test is presented applying appropriate assumptions. The maximum lagging current test is then simulated applying a small salient pole machine with the rated 31.5 kVA using Matlab/Simulink. Some simulation results are illustrated that prove correctness and validity of the new analysis and the proof described by the present paper.
H. Yaghobi,
Volume 13, Issue 1 (3-2017)
Abstract

Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model based and are too complex. Artificial neural network (ANN) methods are robust and less model dependent for fault diagnosis when the fault signature can be directly achieved using the sampling data. In this procedure, the state of internal process will be ignored. Therefore, generalized regression neural network (GRNN) based method is presented in this paper that uses negative sequence currents (calculated from the machine's currents) as inputs to detect and locate an inter-turn fault in the stator windings of the induction motor. Turn-to-turn fault by changing the contact resistance and various numbers of shorted turns for realizing the fault severity has been modeled by Matlab/Simulink. The simulation and experimental results show that the proposed method is effective for the diagnosis of stator inter-turn fault in induction motor under the supply voltage unbalances.


M. Samami, H. Yaghobi, M. Niaz Azari,
Volume 13, Issue 2 (6-2017)
Abstract

This investigation deals with a mathematical model for a distribution transformer including saturation effect. To this end, the equations related to a three phase transformer are specified and the effect of an inter-turn fault is included. Naturally by applying an inter-turn fault the inductance and resistance matrix will change. Thus, unknown quantities of inductances and resistances for completing the matrix are calculated and the inputs, outputs and state variables are specified. All the equations will be rewritten in terms of state variables, subsequently saturation effect is added to the model. Finally the block diagram of the specified model based on the obtained equations are designed and the ultimate model is simulated. The saturation effect, added to the mathematical model and also the variable fault parameters are known as two significant contributions which distinguish this study from other investigations. Various results obtained from the simulation of the final model confirm the changes in the behavior of faulty transformer such as: a large circulating current flowing in the shorted turns, lower impact on terminal voltages and currents, a sudden increase in current flowing in the primary winding, asymmetrical flux distribution and inverse proportion of the fault severity and the limiting resistor.


F. Mahmouditabar, A. Vahedi, P. Ojaghlu,
Volume 14, Issue 1 (3-2018)
Abstract

Permanent magnet motors have been considered for a variety of applications due to their features such as high power density and high efficiency. One of the issues that should be investigated in the design of these motors is the demagnetization problem. Usually, the demagnetization analysis is carried out in a steady state, while demagnetization effect in dynamic condition is more considerable due to pulse shaped of armature field. Based on this fact, in this paper, dynamic demagnetization is investigated for an IPM V‑shaped magnet. This study has been done for two types of magnet, each one in static & dynamic conditions and the results are compared. Moreover, the effect of flux weakening regime on demagnetization is investigated.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.