M. M Daevaeiha, M. R Homaeinezhad, M. Akraminia, A. Ghaffari, M. Atarod,
Volume 6, Issue 3 (9-2010)
Abstract
The aim of this study is to introduce a new methodology for isolation of ectopic
rhythms of ambulatory electrocardiogram (ECG) holter data via appropriate statistical
analyses imposing reasonable computational burden. First, the events of the ECG signal are
detected and delineated using a robust wavelet-based algorithm. Then, using Binary
Neyman-Pearson Radius test, an appropriate classifier is designed to categorize ventricular
complexes into "Normal + Premature Atrial Contraction (PAC)" and "Premature
Ventricular Contraction (PVC)" beats. Afterwards, an innovative measure is defined based
on wavelet transform of the delineated P-wave namely as P-Wave Strength Factor (PSF)
used for the evaluation of the P-wave power. Finally, ventricular contractions pursuing
weak P-waves are categorized as PAC complexes however, those ensuing strong P-waves
are specified as normal complexes. The discriminant quality of the PSF-based feature space
was evaluated by a modified learning vector quantization (MLVQ) classifier trained with
the original QRS complexes and corresponding Discrete Wavelet Transform (DWT) dyadic
scale. Also, performance of the proposed Neyman-Pearson Classifier (NPC) is compared
with the MLVQ and Support Vector Machine (SVM) classifiers using a common feature
space. The processing speed of the proposed algorithm is more than 176,000 samples/sec
showing desirable heart arrhythmia classification performance. The performance of the
proposed two-lead NPC algorithm is compared with MLVQ and SVM classifiers and the
obtained results indicate the validity of the proposed method. To justify the newly defined
feature space (σi1, σi2, PSFi), a NPC with the proposed feature space and a MLVQ
classification algorithm trained with the original complex and its corresponding DWT as
well as RR interval are considered and their performances were compared with each other.
An accuracy difference about 0.15% indicates acceptable discriminant quality of the
properly selected feature elements. The proposed algorithm was applied to holter data of
the DAY general hospital (more than 1,500,000 beats) and the average values of Se =
99.73% and P+ = 99.58% were achieved for sensitivity and positive predictivity,
respectively.
S. Ghavami, B. Abolhassani,
Volume 6, Issue 3 (9-2010)
Abstract
Wide band code division multiple access (WCDMA) signals, transmitted by the
base station high power amplifiers (HPAs), show high peak to average power ratios
(PAPR), which results in nonlinear distortions. In this paper, using computer simulations
effect of using a predistorted HPA on the symbol error rate (SER) of multi-user detectors in
terms of output back-off (OBO) in the transmit power is analyzed. As well, using
polynomials for modeling predistorters to remove nonlinear distortions of traveling wave
tube amplifiers (TWTAs) and of solid state power amplifiers (SSPAs), effect of different
degrees of polynomials on the SER is investigated. Simulation results show that a
polynomial of degree 4 is a sufficient degree polynomial, which fits to the AM/AM
characteristic of the predistorter for TWTAs. As well, for solid state power amplifiers
(SSPAs) with different p values, different approximations are considered and sufficient
degree polynomials are found.
M. Dosaranian Moghadam, H. Bakhshi, G. Dadashzadeh,
Volume 6, Issue 3 (9-2010)
Abstract
In this paper, we propose smart step closed-loop power control (SSPC)
algorithm and base station assignment based on minimizing the transmitter power (BSAMTP)
technique in a direct sequence-code division multiple access (DS-CDMA) receiver in
the presence of frequency-selective Rayleigh fading. This receiver consists of three stages.
In the first stage, with conjugate gradient (CG) adaptive beamforming algorithm, the
desired users’ signal in an arbitrary path is passed and the inter-path interference is
canceled in other paths in each RAKE finger. Also in this stage, the multiple access
interference (MAI) from other users is reduced. Thus, the matched filter (MF) can be used
for the MAI reduction in each RAKE finger in the second stage. Also in the third stage, the
output signals from the matched filters are combined according to the conventional
maximal ratio combining (MRC) principle and then are fed into the decision circuit of the
desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP
technique can significantly improve the network bit error rate (BER) in comparison with
other algorithms. Also, we observe that significant savings in total transmit power (TTP)
are possible with our proposed methods.
C. Lucas, F. Tootoonchian, Z. Nasiri-Gheidari,
Volume 6, Issue 3 (9-2010)
Abstract
In this paper a brushless permanent magnet motor is designed considering
minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent
magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite
element analysis (FEA) is carried out base on the optimized and conventional geometric
dimensions of the motor. The results of the FEA deal to the significant improvement of the all
objective functions.
M. Alaee, M. Sepahvand, R. Amiri, M. Firoozmand,
Volume 6, Issue 3 (9-2010)
Abstract
In order to detect targets upon sea surface or near it, marine radars should be
capable of distinguishing signals of target reflections from the sea clutter. Our proposed
method in this paper relates to detection of dissimilar marine targets in an inhomogeneous
environment with clutter and non-stationary noises, and is based on adaptive thresholding
determination methods. The variance and the mean values of the noise level have been
estimated in this paper, based on non-stationary, statistical methods and thresholding has
been carried out using the suggested two-pole recursive filter. Making the rate of false
alarm constant, the concerned threshold resolves the hypothesis of existence or absence of
the target signal. Performance of the mentioned algorithm has been compared with the
well-known conventional method as CA-CFAR in terms of decreasing the losses and
increasing calculation speed. The algorithm provided for detection of signal has been
implemented as a part of signal-processing algorithms of some practical marine radar. The
results obtained from the algorithm performance in a real environment indicate appropriate
workability of this method in heterogeneous environment and non-stationary interference.
L. Ghods, M. Kalantar,
Volume 6, Issue 3 (9-2010)
Abstract
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial
Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the
current and future trends is carried out for global grid of Iran. Predictions were done for
target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load
forecasting is mainly affected by economy factors rather than weather conditions. This
study focuses on economical data that seem to have influence on long-term electric load
demand. The data used are: actual yearly, incremental growth rate from previous year, and
blend (actual and incremental growth rate from previous years). As the results, the
maximum demands for 2007 through 2011 are predicted and is shown to be elevated from
37138 MW to 45749 MW for Iran Global Grid. The annual average rate of load growth
seen per five years until 2011 is about 5.35%
A. Nemati, M. Pakdel,
Volume 6, Issue 3 (9-2010)
Abstract
A novel ZVZCS isolated dual series-resonant active-clamp dc–dc converter is
proposed to obtain high efficiency. The proposed converter employs an active-clamp
technique, while a series-resonant scheme controls the output voltage with the complementary
pulse width modulation controller. The active-clamp circuit serves to recycle the energy
stored in the leakage inductance or the magnetizing inductance and provides zero-voltage and
zero-current turn-on and turn off switching. The voltage stresses of the main switch are
clamped. The voltage transient spikes across the dual series active clamp circuit and the
current stress of the current-fed side switches are limited by auxiliary active clamping circuits
on both sides, and ZVZCS is achieved. The operating principles and design considerations are
discussed and verified by simulations using PSIM software. Also, the EMI reduction
techniques from EMC point of view in the circuits related to converters has been pointed out.
S. M. Ejabati, S. H. Zahiri,
Volume 16, Issue 2 (6-2020)
Abstract
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the number of algorithm individuals and the creation of feasible subspaces appropriate to environmental conditions. Accordingly, to prevent early convergence along with the increasing speed of local search, the search space is divided with respect to the conditions of each moment into subspaces labeled as focused search area, and focused individuals are recruited to make search for it. Moreover, the structure of the design is in such a way that it often adapts itself to environmental condition, and there is no need to identify any change in the environment. The framework proposed for particle swarm optimization algorithm has been implemented as one of the most notable static optimization and a new optimization method referred to as ant lion optimizer. The results from moving peak benchmarks (MPB) indicated the good performance of the proposed framework for dynamic optimization. Furthermore, the positive performance of practices was assessed with respect to real-world issues, including clustering for dynamic data.