Search published articles


Showing 6 results for Type of Study: Closed - Microgrid Special Issue 2022

Shankarshan Prasad Tiwari, Ebha Koley,
Volume 18, Issue 4 (12-2022)
Abstract

In recent years, DC microgrid has attracted considerable attention of the research community because of the wide usage of DC power-based appliances. However, the acceptance of DC microgrid by power utilities is still limited due to the issues associated with the development of a reliable protection scheme. The high magnitude of DC fault current, its rapid rate of rising and absence of zero crossing hinders achieving reliable protection in DC microgrid. Further, the intermittency associated with the non-conventional distributed generators demands adaptiveness under varying weather conditions. In this paper, the above-mentioned issues are addressed by developing a bagging tree-based protection approach for a multi-terminal DC microgrid. The proposed scheme addresses the intermittency associated with renewable sources. It performs the functions of mode detection, fault detection/classification, and faulty section identification using local information of current and voltage signals only. The same avoids the communication network related drawbacks like data loss and latency.
 

Vahid Bagheri, Amir Farhad Ehyaei, Mohammad Haeri,
Volume 18, Issue 4 (12-2022)
Abstract

In distribution networks, failure to smooth the load curve leads to voltage drop and power quality loss. In this regard, electric vehicle batteries can be used to smooth the load curve. However, to persuade vehicle owners to share their vehicle batteries, we must also consider the owners' profits. A challenging problem is that existing methods do not take into account the vehicle owner demands including initial and final states of charge and arrival and departure times of vehicles. Another problem is that battery capacity of each vehicle varies depending on the type of vehicle; which leads to uncertainties in the charging and discharging dynamics of batteries. In this paper, we propose a modified mean-field method so that the load curve is smoothed, vehicle owner demands are met, and different capacities of electric vehicle batteries are considered. The simulation results show the effectiveness of the proposed method.

Hamid Salarvand, Meysam Doostizadeh, Farhad Namdari,
Volume 18, Issue 4 (12-2022)
Abstract

Owing to the portability and flexibility of mobile energy storage systems (MESSs), they seem to be a promising solution to improve the resilience of the distribution system (DS). So, this paper presents a rolling optimization mechanism for dispatching MESSs and other resources in microgrids in case of a natural disaster occurrence. The proposed mechanism aims to minimize the total system cost based on the updated information of the status of the DS and transportation network (TN). In addition, the characteristics of the protection system in DS (i.e., relays with fixed protection settings), the constraints related to the protection coordination are examined under pre- and post-event conditions. The coordinated scheduling at each time step is formulated as a two-stage stochastic mixed-integer linear program (MILP) with temporal-spatial and operation constraints. The proposed model is carried out on the Sioux Falls TN and the IEEE 33-bus test system. The results demonstrate the effectiveness of MESS mobility in enhancing DS resilience due to the coordination of mobile and stationary resources.

Pravat Biswal, Veera Venkata Subrahmanya Kumar Bhajana, Pavel Drabek,
Volume 18, Issue 4 (12-2022)
Abstract

This paper proposes two new soft-switching transformerless converters with high voltage conversion ratio. These proposed converters achieve soft-switching each with a single auxiliary resonant cell. The merit of these converters is reduced switching losses with lesser number of devices. The main switching devices are turned off with zero current switching (ZCS). Apart from the soft-switching feature, the voltage conversion ratio is increased in comparison with the existing topologies. The operating principles and the simulation results on 12V/200V/500W converter system are presented in this paper.
 
Mitesh Kumar, Shivam Shivam,
Volume 18, Issue 4 (12-2022)
Abstract

The idea of a microgrid is created by utilizing more diverse ac or dc distributed generation (DG) sources along with an energy storage system (ESS) and loads. The most efficient and reliable selection of ac and dc microgrids is a hybrid ac/dc microgrid. The hybrid microgrid largely overcomes the shortcomings of standalone ac or dc microgrids. A bidirectional interlinking converter (BIC) is utilized in the interface for controlling power flow between subgrids. In order to improve voltage and frequency regulation with effective power sharing, the BIC based on the proposed control scheme is implemented for power flow between ac and dc sub-grid in Islanding mode. The control scheme is modified based on conventional droop control with voltage and frequency variation in order to improve bus voltage and frequency regulation with effective power sharing for intermittent sources. The operation of the islanded hybrid ac/dc microgrid is performed with solar, wind, and energy storage system under variable generation and load conditions. In order to make robustness of the system, there are considered different cases for generation and load scenarios. In the transient state, the overshoot and settling time of frequency and voltage are improved, as well as the frequency and voltage regulations are found within the permissible limit in the steady state. Furthermore, the corresponding variations are shown in tabular form in the simulation result. The actual data of solar irradiance and wind speed have been taken from the National Renewable Energy Laboratory. The performance of the system is verified in MATLAB/Simulink environment.
 


Shankarshan Prasad Tiwari,
Volume 18, Issue 4 (12-2022)
Abstract

In modern infrastructure, the demand for DC power-based appliances is rapidly increasing, and this phenomenon has created a positive impact on the acceptance of the DC microgrid. However, due to numerous issues such as the absence of zero crossing, bidirectional behaviour of sources, and different magnitudes of fault current during grid connected and islanded modes of operation, protecting DC microgrid remains a difficult task. Apart from these challenges, intermittent conditions are also a major challenge. Under such type scenarios, shadow conditions in the solar based DERs will reduce the desired output of the solar panels simultaneously in wind based DERs will be affected due to the low pressure of air. In this type of circumstances threshold setting based overcurrent relays may fail to sense the operational dynamics of the system. Therefore, in this manuscript, an ensemble of decision tree-based protection scheme is proposed to provide immunity against the stochastic conditions under the varying natures of the fault resistance. A total of 7150 test cases have been considered for validation of the protection scheme and all modules have been tested.
 


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.