Search published articles


Showing 3 results for Abdul Nasir

Hanim Suraya Mohd Mokhtar, Aimi Salihah Abdul Nasir, Mohammad Faridun Naim Tajuddin, Muhammad Hafeez Abdul Nasir, Kumuthawathe Ananda Rao,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

The rapid growth of photovoltaic (PV) systems has highlighted the need for efficient and reliable defect detection to maintain system performance. Electroluminescence (EL) imaging has emerged as a promising technique for identifying defects in PV cells; however, challenges remain in accurately classifying defects due to the variability in image quality and the complex nature of the defects. Existing studies often focus on single image enhancement techniques or fail to comprehensively compare the performance of various image enhancement methods across different deep learning (DL) models. This research addresses these gaps by proposing an in-depth analysis of the impact of multiple image enhancement techniques on defect detection performance, using various deep learning models of low, medium, and high complexity. The results demonstrate that mid-complexity models, especially DarkNet-53, achieve the highest performance with an accuracy of 94.55% after MSR2 enhancement. DarkNet-53 consistently outperformed both lower-complexity models and higher-complexity models in terms of accuracy, precision, and F1-score. The findings highlight that medium-depth models, enhanced with MSR2, offer the most reliable results for photovoltaic defect detection, demonstrating a significant improvement over other models in terms of accuracy and efficiency. This research provides valuable insights for optimizing defect detection systems in photovoltaic applications, emphasizing the importance of both model complexity and image enhancement techniques for robust performance.
Edy Victor Haryanto S, Aimi Salihah Abdul Nasir, Mohd Yusoff Mashor, Bob Subhan Riza, Zeehaida Mohamed,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

Malaria is a parasitic disease that causes significant morbidity and mortality worldwide. Early diagnosis and treatment are crucial for preventing complications and improving patient outcomes. Microscopic examination of blood smears remains the gold standard for malaria diagnosis, but it is time-consuming and requires skilled technicians. Deep learning has emerged as a promising tool for automated image analysis, including malaria diagnosis. In this study, we propose a novel approach for identifying malaria parasites in microscopic images using the GoogLeNet. Our method includes enhancement with the AGCS method, color transformation with grayscale, adaptive thresholding for segmentation, extraction, and GoogLeNet-based classification. We evaluated our method on a dataset of malaria blood smear images and achieved an accuracy of 95%, demonstrating the potential of GoogLeNet for automated malaria diagnosis.
Kumuthawathe Ananda-Rao, Steven Taniselass, Afifah Shuhada Rosmi, Aimi Salihah Abdul Nasir, Nor Hanisah Baharudin, Indra Nisja,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

This study presents a Fuzzy Logic Controller (FLC)-based Maximum Power Point Tracking (MPPT) system for solar Photovoltaic (PV) setups, integrating PV panels, a boost converter, and battery storage. While FLC is known for its robustness in PV systems, challenges in battery charging and discharging efficiency can affect performance. The research addresses these challenges by optimizing battery charging, preventing overcharging, and enhancing overall system efficiency. The FLC MPPT system is designed to regulate the battery's State of Charge (SOC) while evaluating system performance under varying solar irradiance and temperature conditions. The system is modeled and simulated using MATLAB/Simulink, incorporating the PV system, MPPT algorithm, and models for the PV module and boost converter. System efficiency is assessed under different scenarios, with results showing 97.92% efficiency under Standard Test Conditions (STC) at 1000 W/m² and 25°C. Additionally, mean efficiencies of 97.13% and 96.13% are observed under varying irradiance and temperature, demonstrating the effectiveness of the FLC MPPT in regulating output. The system also extends battery life by optimizing power transfer between the PV module, boost converter, and battery, ensuring regulated SOC.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.