Search published articles


Showing 2 results for Baktash

S. M. Mirimani, A. Vahedi, M. R. Ghazanchaei, A. Baktash,
Volume 9, Issue 2 (June 2013)
Abstract

Hysteresis motor is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials to make torque. There are different methods to model this kind of motor and take into account the magnetic hysteresis characteristic of the rotor hysteresis ring. In this investigation the application of complex permeability concept is implemented to model the hysteresis loop and the hysteresis loop in inclined ellipse shape is adopted. To the best knowledge of the authors, this has not been studied before. Based on this concept, simulation of hysteresis motor in conventional configuration is done in order to obtain the output values of motor using 3D Finite Element Model (FEM). This 3D finite element model has high level accuracy and gives better insight of motor performance. Meanwhile, in order to validate the simulation results an experimental set up is provided and the output values of typical motor are measured. It is shown that there is a good agreement between experimental and simulation results. i, Abolfazl Vahedi, , r, avahedi@iust.ac.ir(Corresponding author), ,
A. Vahedi, A. Baktash,
Volume 11, Issue 1 (March 2015)
Abstract

Recently, tape wound cores due to their excellent magnetic properties, are widely used in different types of transformers. Performance prediction of these transformers needs an accurate model with ability to determine flux distribution within the core and magnetic loss. Spiral structure of tape wound cores affects the flux distribution and always cause complication of analysis. In this paper, a model based on reluctance networks method is presented for analysis of magnetic flux in wound cores. Using this model, distribution of longitudinal and transverse fluxes within the core can be determined. To consider the nonlinearity of the core, a dynamic hysteresis model is included in the presented model. Having flux density in different points of the core, magnetic losses can be calculated. To evaluate the validity of the model, results are compared with 2-D FEM simulations. In addition, a transformer designed for series-resonant converter and simulation results are compared with experimental measurements. Comparisons show accuracy of the model besides simplicity and fast convergence

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.