Showing 2 results for Darijani
H. A. Lari, A. Kiyoumarsi, A. Darijani, B. Mirzaeian Dehkordi, S. M. Madani,
Volume 10, Issue 4 (December 2014)
Abstract
In Permanent-Magnet Synchronous Generators (PMSGs) the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with different pole-slot combinations are designed. Average torque, torque ripple and cogging torque are evaluated based on finite element method. The combination with best performance is chosen and with the analysis of variation of effective parameters on cogging torque, and introducing a useful method, an improved design of the PMSG with lowest cogging torque and maximum average torque is obtained. The results show a proper performance and a correctness of the proposed method.
A. Darijani, A. Kiyoumarsi, H. A. Lari, B. Mirzaeian Dehkordi, Sh. Bekhrad, S. Rahimi Monjezi,
Volume 11, Issue 1 (March 2015)
Abstract
Permanent-Magnet Synchronous Generators (PMSGs) exhibit high efficiency and power density, and have already been employed in gearless wind turbines. In the gearless wind turbines, due to the removal of the gearbox, the cogging torque is an important issue. Therefore, in this paper, at first, design of a Permanent-Magnet Synchronous Generator for a 2MW gearless horizontal-axis wind turbine, according to torque-speed and capability curves, is presented. For estimation of cogging torque in PMSGs, an analytical method is used. Performance and accuracy of this method is compared with the results of Finite Element Method (FEM). Considering the effect of dominant design parameters, cogging torque is efficiently reduced.