Search published articles


Showing 4 results for Fallah

H. Fallah Khoshkar, A. Doroudi, M. Mohebbi,
Volume 10, Issue 4 (December 2014)
Abstract

This paper studies the effects of symmetrical voltage sags on the operational characteristics of a Permanent Magnet Synchronous Motor (PMSM) by Finite Element Method (FEM). Voltage sags may cause high torque pulsations which can damage the shaft or equipment connected to the motor. By recognizing the critical voltage sags, sags that produce hazardous torque variations could be prevented. Simulations results will be provided and the critical voltage sags are recognized. A simple theoretical analysis will also be presented to obtain a qualitative understanding of the phenomena occurring in PMSM during symmetrical voltage sags
J. Fallah Ardashir, M. Sabahi, S. H. Hosseini, E. Babaei, G. B. Gharehpetian,
Volume 13, Issue 2 (June 2017)
Abstract

This paper proposes a new single phase transformerless Photovoltaic (PV) inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC) technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.


H. Rajabalipanah, M. Fallah, A. Abdolali,
Volume 15, Issue 2 (June 2019)
Abstract

An intelligent design method of double screen frequency selective surfaces (FSSs) is addressed in this paper. The employed unit cell is composed of two metallic screens, which are printed on both sides of a substrate. The presented non-trial-and-error approach is investigated based on the separate design of each screen. With the help of some physical intuition and an equivalent circuit model, it is shown that the conventional use of complement geometries restricts the final desired filtering response. Therefore, unlike the previous studies, the metallic screens are not geometrically complementary in this paper. An excellent agreement between the full-wave simulations and corresponding equivalent circuit models has been observed. Using standard lumped elements, a highly selective miniaturized FSS (0.06λ0 ~ 0.08λ0) with two closely-spaced pass bands is designed, for GSM and WLAN frequencies. Simulation results show a dual-polarized characteristic with a good angular stability performance for the proposed structure.

Amir Gallaj, Jaber Fallah Ardashir, Mojtaba Beiraghi,
Volume 18, Issue 4 (December 2022)
Abstract

This work proposes a high step-up interleaved dc/dc topology utilizing a VM (voltage multiplier) cell suitable for PV applications. The VM cells D/C (Diode/Cap.) are cascaded among the phases to approach a high voltage gain. Besides, the voltage converting ratio of the presented structure can be improved by extending the VM cells and it also leads to drop in the normalized voltage stress throughout the switches and some diodes. Therefore, by utilizing a semiconductor (Switch/Diode) with a lower rating leads to a decline in system losses. Also, the efficiency of the suggested topology will be considerable and the overall cost can be decreased. To elaborate on the main benefits of the proposed topology, a comparison has been made across other literature regarding the efficiency, peak voltage throughout the semiconductors and voltage ratio of the converter. To prove the accuracy principle of operation of the suggested converter, two prototypes (for n=1, 2 stages) were built and tested at 350 W and 453 W with an operating frequency of about 40 kHz performed.
 


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.