Showing 3 results for Hajizadeh
A. Hajizadeh, M. Aliakbar-Golkar,
Volume 3, Issue 1 (April 2007)
Abstract
The operation of Fuel Cell Distributed Generation (FCDG) systems in
distribution systems is introduced by modeling, controller design, and simulation study of a
Solid Oxide Fuel Cell (SOFC) distributed generation (DG) system. The physical model of
the fuel cell stack and dynamic models of power conditioning units are described. Then,
suitable control architecture based on fuzzy logic control for the overall system is presented
in order to active power control and power quality improvement. A MATLAB/Simulink
simulation model is developed for the SOFC DG system by combining the individual
component models and the controllers designed for the power conditioning units.
Simulation results are given to show the overall system performance including active power
control and voltage regulation capability of the distribution system.
A. Hajizadeh,
Volume 9, Issue 1 (March 2013)
Abstract
This paper presents modeling and control of a hybrid distributed energy sources including photovoltaic (PV), fuel cell (FC) and battery energy storage (BES) in a microgrid which provides both real and reactive power to support an unbalanced utility grid. The overall configuration of the microgrid including dynamic models for the PV, FC, BES and its power electronic interfacing are briefly described. Then controller design methodologies for the power conditioning units to control the power flow from the hybrid power plant to the unbalanced utility grid are presented. In order to distribute the power between power sources, the neuro-fuzzy power controller has been developed. Simulation results are presented to demonstrate the effectiveness and capability of proposed control strategy.
M. Monemizadeh, H. Fehri, Gh. Abed Hodtani, S. Hajizadeh,
Volume 16, Issue 2 (June 2020)
Abstract
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian channel with a priori known interference at the encoder when the transmitter suffers from a fast-varying phase noise can be modeled by the AENC-AEI. Then, capacity bounds for this channel under a non-negativity constraint as well as a mean value constraint on input are derived. Finally, it is shown both analytically and numerically that the upper and lower bounds coincide at high signal to noise ratios (SNRs), and therefore, the capacity of the AENC-AEI at high SNRs is obtained. Interestingly, this high SNR-capacity has a simple closed-form expression and is independent of the interference mean, analogous to its Gaussian counterpart.