Search published articles


Showing 4 results for Kalantar

M. Kalantar, M. Sedighizadeh,
Volume 1, Issue 1 (January 2005)
Abstract

A dynamic reduced order model using integral manifold theory has been derived, which can be used to simulate the DOIG wind turbine using a double-winding representation of the generator rotor. The model is suitable for use in transient stability programs that can be used to investigate large power systems. The behavior of a wind farm and the network under various system disturbances was studied using this dynamic model. Simulation results of the proposed method represents that integral manifold method results fit the detailed model results with a higher precision than other methods.
M. Gitizadeh, M. Kalantar,
Volume 4, Issue 4 (October 2008)
Abstract

This paper presents a novel optimization based methodology to allocate Flexible AC Transmission Systems (FACTS) devices in an attempt to improve the previously mentioned researches in this field. Static voltage stability enhancement, voltage profile improvement, line congestion alleviation, and FACTS devices investment cost reduction, have been considered, simultaneously, as objective functions. Therefore, multi-objective optimization without simplification has been used in this paper to find a logical solution to the allocation problem. The optimizations are carried out on the basis of location, size and type of FACTS devices. Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC) are utilized to achieve the determined objectives. The problem is formulated according to Sequential Quadratic Programming (SQP) problem in the first stage. This formulation is used to accurately evaluate static security margin with congestion alleviation constraint incorporating voltage dependence of loads in the presence of FACTS devices and estimated annual load profile. The best trade-off between conflicting objectives has been obtained through Genetic Algorithm (GA) based fuzzy multi-objective optimization approach, in the next stage. The IEEE 14-bus test system is selected to validate the allocated devices for all load-voltage characteristics determined by the proposed approach.
L. Ghods, M. Kalantar,
Volume 6, Issue 3 (September 2010)
Abstract

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy factors rather than weather conditions. This study focuses on economical data that seem to have influence on long-term electric load demand. The data used are: actual yearly, incremental growth rate from previous year, and blend (actual and incremental growth rate from previous years). As the results, the maximum demands for 2007 through 2011 are predicted and is shown to be elevated from 37138 MW to 45749 MW for Iran Global Grid. The annual average rate of load growth seen per five years until 2011 is about 5.35%
L. Ghods, M. Kalantar,
Volume 7, Issue 4 (December 2011)
Abstract

Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-cost plan. In general, resource planning is performed subject to numerous uncertainties. Expert opinion indicates that a major source of uncertainty in planning for future capacity resource needs and operation of existing generation resources is the forecasted load demand. This paper presents an overview of the past and current practice in long- term demand forecasting. It introduces methods, which consists of some traditional methods, neural networks, genetic algorithms, fuzzy rules, support vector machines, wavelet networks and expert systems.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.