Search published articles


Showing 3 results for Karami

F. Farabi, M. R. Mosavi, S. Karami,
Volume 11, Issue 2 (June 2015)
Abstract

Impressive development of computer networks has been required precise evaluation of efficiency of these networks for users and especially internet service providers. Considering the extent of these networks, there has been numerous factors affecting their performance and thoroughly investigation of these networks needs evaluation of the effective parameters by using suitable tools. There are several tools to measure network's performance which evaluate and analyze the parameters affecting the performance of the network. D-ITG traffic generator and measuring tool is one of the efficient tools in this field with significant advantages over other tools. One of D-ITG drawbacks is the need to determine input parameters by user in which the procedure of determining the input variables would have an important role on the results. So, introducing an automatic method to determine the input parameters considering the characteristics of the network to be tested would be a great improvement in the application of this tool. In this paper, an efficient method has been proposed to determine optimal input variables applying evolutionary algorithms. Then, automatic D-ITG tool operation would be studied. The results indicate that these algorithms effectively determine the optimal input variables which significantly improve the D-ITG application.

AWT IMAGE


M. Janipour, M. A. Karami, A. Zia,
Volume 12, Issue 2 (June 2016)
Abstract

A four port network adder-subtractor module, for surface plasmon polariton (SPP) waves based on a ring resonator filter is proposed. The functionality of module is achieved by the phase difference manipulation of guided SPPs through different arms connected to the ring resonator. The module is designed using the concepts of a basic two-port device proposed in this paper. It is shown that two port network eliminates odd, and transmits even SPP modes of a single source. Moreover, in the case of four-port adder (with two individual sources), it is elucidated that according to the location of each output port, one can achieve the consequent added or subtracted outputs, correspondingly. Two distinct peaks are observed in the transmission spectrum of adder and subtractor outputs, where increasing the individual source phase difference, leads to a red shift in the adder output, and a blue shift in the subtractor output peaks. The proposed module can be used as the building block for implementing arithmetic operations in plasmonic integrated circuits. The transmission line theory verifies the numerical simulation results, and demonstrates the functionality of the adder/subtractor module.  


S. Ejdehakosh, M. A. Karami,
Volume 15, Issue 4 (December 2019)
Abstract

This work presents a dual-junction, single-photon avalanche diode (SPAD) with electrical μ-lens designed and simulated in 90 nm standard complementary metal oxide semiconductor (CMOS) technology. The evaluated structure can collect the photons impinging beneath the pixel guard ring, as well as the pixel active area. The fill factor of the SPAD increases from 12.5% to 42% in comparison with similar works on the same technology, according to new charge collections. Although the designed SPAD suffers from high dark count rate (DCR of 300kHz at 0.17V excess bias at room temperature) due to high amount of tunneling which was predicted in previous similar works, it still can be used in different applications such as random number generators and charged particle positioning pixels.​



Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.