Search published articles


Showing 3 results for Kazemian

B. Ghafary, F.d. Kashani, E. Kazemian,
Volume 9, Issue 1 (March 2013)
Abstract

The effects of aberration on the Bit-Error-Rate (BER) and reliability of free- space optical (FSO) communication links are investigated. Based on aberrated divergent rectangular partially coherent flat-topped beam formula on the receiver plane and considering the atmosphere losses due to absorption and scattering, numerical values for Power In Bucket (PIB), Signal to Noise Ratio (SNR) and BER are calculated. Using above mentioned values, the effects of source parameters on link reliability is described. The results are illustrated by graphs obtained by calculation and simulation.
F Dabbagh Kashani, M R Hedayati Rad, E Kazemian,
Volume 9, Issue 4 (December 2013)
Abstract

Study of the beam propagation behavior through oceanic media is a challenging subject. In this paper, based on generalized Collins integral, the mean irradiance profile of Gaussian laser beam propagation through ocean is investigated. Power In Special Bucket (PIB) is calculated. Using analytical expressions and calculating seawater transmission, the effects of absorption and scattering on beam propagation are studied. Based on these formulae, propagation in ocean and atmosphere are compared. The effects of some optical and environmental specifications, such as divergence angle and chlorophyll concentration in seawater on beam propagation by using mean irradiance, PIB and analytical formula of oceanic transmission are studied. The calculated results are shown graphically.
F. Dabbagh Kashani, M. R. Hedayati Rad, E. Kazemian, A. Kahrizi, M. R. Mahzoun,
Volume 10, Issue 1 (March 2014)
Abstract

In this paper, we investigate the effects of auto-tracking subsystem together with different beam divergences on SNR, BER and stability of FSO communication links. For this purpose we compute the values of power, SNR and BER on receiver, based on analytic formula of Gaussian beam on receiver plane. In this computation the atmospheric effects including absorption, scattering and turbulence are considered. Using mentioned computed values, the laser link stability and its reliability in presence of auto-tracking subsystems are evaluated. The results of simulation and computation are shown with the help of figures and tables.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.