Showing 3 results for Lari
H. A. Lari, A. Kiyoumarsi, A. Darijani, B. Mirzaeian Dehkordi, S. M. Madani,
Volume 10, Issue 4 (December 2014)
Abstract
In Permanent-Magnet Synchronous Generators (PMSGs) the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with different pole-slot combinations are designed. Average torque, torque ripple and cogging torque are evaluated based on finite element method. The combination with best performance is chosen and with the analysis of variation of effective parameters on cogging torque, and introducing a useful method, an improved design of the PMSG with lowest cogging torque and maximum average torque is obtained. The results show a proper performance and a correctness of the proposed method.
A. Darijani, A. Kiyoumarsi, H. A. Lari, B. Mirzaeian Dehkordi, Sh. Bekhrad, S. Rahimi Monjezi,
Volume 11, Issue 1 (March 2015)
Abstract
Permanent-Magnet Synchronous Generators (PMSGs) exhibit high efficiency and power density, and have already been employed in gearless wind turbines. In the gearless wind turbines, due to the removal of the gearbox, the cogging torque is an important issue. Therefore, in this paper, at first, design of a Permanent-Magnet Synchronous Generator for a 2MW gearless horizontal-axis wind turbine, according to torque-speed and capability curves, is presented. For estimation of cogging torque in PMSGs, an analytical method is used. Performance and accuracy of this method is compared with the results of Finite Element Method (FEM). Considering the effect of dominant design parameters, cogging torque is efficiently reduced.
H. Sh. Solari, B. Majidi, M. Moazzami,
Volume 15, Issue 4 (December 2019)
Abstract
In this paper, a new method for modelling and estimation of reliability parameters of power transformer components in distribution and transmission voltage levels for preventive-corrective maintenance schedule of transformers is proposed. In this method, with optimal estimation of Weibull distribution parameters using least squares method and input data uncertainty reduction, failure rate and probable distributions of power transformers’ components as the key parameters of equipment reliability is estimated. Then by using the results of this modelling, a maintenance schedule for evaluation the effect of maintenance on reliability of this equipment is presented. Simulation results using real failure data of 196 power transformers on 33 to 230kV voltage levels show that applying the proposed method in addition to uncertainty reduction of raw input data and better estimation of equipment reliability, improve decision making regarding maintenance schedule of power transformers.