Search published articles


Showing 2 results for M. H. Javidi

H. Abdi, M. Parsa Moghaddam, M. H. Javidi,
Volume 1, Issue 3 (July 2005)
Abstract

Restructuring of power system has faced this industry with numerous uncertainties. As a result, transmission expansion planning (TEP) like many other problems has become a very challenging problem in such systems. Due to these changes, various approaches have been proposed for TEP in the new environment. In this paper a new algorithm for TEP is presented. The method is based on probabilistic locational marginal price (LMP) considering electrical loss, transmission tariffs, and transmission congestion costs. It also considers the load curtailment cost in LMP calculations. Furthermore, to emphasize on competence of competition ability of the system, the final plan(s) is (are) selected based on minimization of average of total congestion cost for transmission system.
T. Barforoushi, M. P. Moghaddam, M. H. Javidi, M. K. Sheik-El-Eslami,
Volume 2, Issue 2 (April 2006)
Abstract

Medium-term modeling of electricity market has essential role in generation expansion planning. On the other hand, uncertainties strongly affect modeling and consequently, strategic analysis of generation firms in the medium term. Therefore, models considering these uncertainties are highly required. Among uncertain variables considered in the medium term generation planning, demand and hydro inflows are of the greatest importance. This paper proposes a new approach for simulating the operation of power market in medium-term, taking into account demand and hydro inflows uncertainties. The demand uncertainty is considered using Monte-Carlo simulations. Standard Deviation over Expected Profit (SDEP) of generation firms based on simulation results is introduced as a new index for analyzing the influence of the demand uncertainty on the behavior of market players. The correlation between capacity share of market players and their SDEP is also demonstrated. The uncertainty of inflow as a stochastic variable is dealt using scenario tree representation. Rational uncertainties as strategic behavior of generation firms, intending to maximize their expected profit, is considered and Nash-Equilibrium is determined using the Cournot model game. Market power mitigation effects through financial bilateral contracts as well as demand elasticity are also investigated. Case studies confirm that this representation of electricity market provides robust decisions and precise information about electricity market for market players which can be used in the generation expansion planning framework.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.