Showing 2 results for Mohamed Jamil
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
Partial discharge (PD) is a significant concern in the operation of rotating machines such as generators and motors, as it can lead to insulation degradation over time, reducing the reliability and lifespan of the machines. To monitor PD activity, coupling capacitors (CC) are widely used as sensors for online PD detection, as they can effectively capture PD pulses in high-voltage (HV) rotating machines. The primary objective of this research is to measure and analyze PD signals using a CC sensor for HV rotating machines under varying input voltages and frequencies, following the guidelines of the IEC 60270 standard and utilizing the MPD 600 device. The experimental setup includes performing insulation resistance (IR) testing, PD calibration, and PD measurement. Additionally, this paper provides a detailed study of PD signal characteristics, specifically focusing on phase-resolved partial discharge (PRPD) patterns, to understand the behavior of PD in HV rotating machines, enhancing fault diagnosis and preventive maintenance strategies.
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
Partial discharge (PD) is a critical phenomenon in electrical systems, particularly in high-voltage (HV) equipment like transformers, cables, switchgear, and rotating machines. In rotating machines such as generators and motors, PD is a significant concern as it leads to insulation degradation, potentially resulting in catastrophic failure. Effective and reliable diagnostic techniques are essential for detecting and analyzing PD to ensure the operational safety and longevity of such equipment. Various PD detection methods have been developed, including coupling capacitor (CC), high-frequency current transformer (HFCT), and ultra-high frequency (UHF) techniques, each offering unique advantages in assessing the condition of HV electrical systems. Among these, coupling capacitors have gained significant attention due to their ability to improve the accuracy, sensitivity, and efficiency of PD detection in rotating machines. This study focuses on the advancements in coupling capacitor-based techniques and their critical role in enhancing PD diagnostics for monitoring and maintaining high-voltage rotating machinery.