Showing 2 results for Robandi
F. Hunaini, I. Robandi, I. N. Sutantra,
Volume 11, Issue 1 (March 2015)
Abstract
Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering system using Imperialist Competitive Algorithm (ICA). The control systems are built in a cascade, FLC to suppress errors in the lateral motion and the PID control to minimize the error in the yaw motion of the vehicle. FLC is built has two inputs (error and delta error) and single output. Each input and output consists of three Membership Function (MF) in the form of a triangular for language term "zero" and two trapezoidal for language term "negative" and "positive". In order to work optimally, each MF optimized using ICA to get the position and width of the most appropriate. Likewise, in the PID control, the constant at each Proportional, Integral and Derivative control also optimized using ICA, so there are six parameters of the control system are simultaneously optimized by ICA. Simulations performed on vehicle models with 10 Degree Of Freedom (DOF), the plant input using the variables of steering that expressed in the desired trajectory, and the plant outputs are lateral and yaw motion. The simulation results showed that the FLC-PID control system optimized by using ICA can maintain the movement of vehicle according to the desired trajectory with lower error and higher speed limits than optimized with Particle Swarm Optimization (PSO).
Mohamad Almas Prakasa, Mohamad Idam Fuadi, Muhammad Ruswandi Djalal, Imam Robandi, Dimas Fajar Uman Putra,
Volume 20, Issue 3 (September 2024)
Abstract
The unbalanced load distribution in the electrical distribution network caused crucial power losses. This condition occurs in one of the electrical distribution networks, 20 kV Tarahan Substation, Province of Bandar Lampung, Indonesia. This condition can be maintained using optimal reconfiguration with the integration of Distributed Generation (DG) based on Renewable Energy (RE). This study demonstrates the optimal reconfiguration of the 20 kV Tarahan Substation with the integration of the Photovoltaic (PV) and Battery Energy Storage System (BESS). The reconfiguration process is optimized by using the Firefly Algorithm (FA). This process is conducted in the 24-hour simulation with various load profiles. The optimal reconfiguration is investigated in two scenarios based on without and with DG integration. The optimal configuration with more balanced load distribution conducted by FA reduces the power losses by up to 31.39% and 32.38% in without and with DG integration, respectively. Besides that, the DG integration improves the lowest voltage bus in the electrical distribution network from 0.95 p.u to 0.97 p.u.