Nurul Hidayah Rodzuan, Ili Najaa Aimi Mohd Nordin, Ahmad ‘athif Mohd Faudzi, Noraishikin Zulkarnain, Muhammad Rusydi Muhammad Razif, Nik Normunira Mat Hassan, Muhamad Hazwan Abdul Hafidz,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
Rehabilitation devices like assistive gloves require bending-type soft actuators for controlled, repetitive finger movements essential for therapy. However, non-segmented actuators often struggle to replicate natural finger articulation, which can cause discomfort and reduce patient compliance. This paper presents the design and assembly of a segmented bending pneumatic soft actuator to achieve index finger flexion, aiming to improve comfort and support natural finger movement at low pressure. The actuator is integrated into a glove with a flexible bend sensor to measure the flexion angle of the metacarpophalangeal joint. Ecoflex 0-50 A-B silicone rubber is used in the fabrication, with air bubbles removed to ensure consistent actuator performance. The study investigates the actuator's performance and the sensor's ability to accurately measure joint flexion. The results, presented through detailed graphs, analyze the actuator’s flexibility, bending, and elongation under different pressure scenarios, offering insights into its effectiveness in improving patient comfort, joint articulation, and rehabilitation outcomes.