Search published articles


Showing 218 results for Im

S. A. Karimi, S. Mirzakuchaki,
Volume 17, Issue 4 (12-2021)
Abstract

Various methods have been proposed to detect the attention and perception of an operator during tasks such as radar monitoring. Due to the high accuracy of electroencephalographic signals, it is utilized for systems based on brain signal. The event-related potential (ERP) technique has been widely used for testing theories of perception and attention. Brain-computer Interface (BCI) provides the communication link between the human’s brain and an external device. In this article, we propose a method to investigate the attention of operators of very sensitive monitoring devices, in particular, the operators of navy ships’ radars in detecting fighter aircrafts. Using a Visual Stimuli, which was shown to the subjects prior to the test, the protocol utilized in this paper yielded a very high accuracy (up to 87%), which makes it a robust method to use in such conditions. Linear LDA and non-linear SVM classifiers were utilized in processing the output signal. Although several P300 systems have been used to detect attention using pattern recognition techniques, the novelty of this study is that attention detection is used for the first time for a radar operator which resulted in acceptable accuracy.

M. Ahmadinia, J. Sadeh,
Volume 17, Issue 4 (12-2021)
Abstract

In this paper, an accurate fault location scheme based on phasor measurement unit (PMU) is proposed for shunt-compensated transmission lines. It is assumed that the voltage and current phasors on both sides of the shunt-compensated line have been provided by PMUs. In the proposed method, the faulted section is determined by presenting the absolute difference of positive- (or negative-) sequence current angles index, firstly. After determining faulted section, the voltage phasor at the shunt-compensator terminal is estimated via the sound section. The faulted section can be assumed as a perfect transmission line that synchronized voltage and current phasors at one end and voltage phasor at the other end are available. Secondly, a new fault location algorithm is presented to locate the precise fault point in the faulted section. In this algorithm, the location of the fault and the fault resistance are calculated simultaneously by solving an optimization problem, utilizing the heuristic Particle Swarm Optimization (PSO) method. The simulation results in MATLAB/SIMULINK platform demonstrate the high performance of the proposed method in finding the fault location in shunt-compensated transmission lines. The proposed scheme has high accuracy for both symmetrical and asymmetrical fault types and high fault resistance.

A. Ghayebloo, S. Shiri,
Volume 17, Issue 4 (12-2021)
Abstract

In this paper, a conceptual study on switching intervals in the classic direct torque control (DTC) method and a novel modified method have been proposed. In the switching table of classic DTC, the switching vectors have been changed in sectors with 60 degrees intervals and their boundaries are fixed. In this study, these fixed boundaries and length of switching intervals have been challenged and proved that the performance of the classic DTC can be improved with modified intervals with different lengths and boundaries. The final proposed switching table not also benefits simplicity of implementation as classic DTC switching table, but also it offers better performance especially in the aspect of low torque ripples. The proposed final switching table has been derived by a two-stage optimization process and the results have been proved by simulation results.

S. A. Rahman, S. Birhan, E. D. Mitiku, G. T. Aduye, P. Somasundaram,
Volume 17, Issue 4 (12-2021)
Abstract

Aim of this paper is to attain the highest voltage sag and swell compensation using a direct converter-based DVR topology. The projected DVR topology consists of a direct converter with bidirectional switches, a multi winding transformer with three primary windings and secondary winding and a series transformer. When voltage swell occurs in a phase, the same phase voltage can be utilized to mitigate the swell as huge voltage exists in the phase where swell has occurred. So it is possible to mitigate an infinite amount of swell. In all the DVR topologies, the converter is only used to synthesize the compensating voltage. The range of voltage sag mitigation depends upon the magnitude of input voltage available for the converter. If this input voltage of the direct converter is increased, then the range of voltage compensation could also be increased. Input voltage of the direct converter is increased using the multi winding transformer. The direct converter is synthesizing the compensating voltage. This compensating voltage is injected in series with the supply voltage through the series transformer and the sag is mitigated. In this proposed topology, the input voltage for the direct converter is increased by adding the three phase voltages using a multi winding transformer. Thus the voltage sag compensating range of this topology is increased to 68% and the swell compensating range is 500%. Ordinary PWM technique has been used to synthesize the PWM pulses for the direct converter and the THD of the compensated load voltage is less than 5%. This topology is simulated using MATLAB Simulink and the results are shown for authentication.

A. Mansoori, A. Sheikhi Fini, M. Parsa Moghaddam,
Volume 18, Issue 1 (3-2022)
Abstract

In recent years, the increasing of non-dispatchable resources has posed severe challenges to the operation planning of power systems. Since these resources are random in nature, the issue of flexibility to cover their uncertainty and variability has become an important research topic. Therefore, having flexible resources to cover changes in the generation of these resources during their operation can play an essential role in eliminating node imbalances, system reliability, providing the required flexible ramping capacity, and reducing system operating costs. Among flexibility resources, there are quick-act generation units such as gas units that can play an important role in covering net load changes. Also, on the demand side, the optimal design of demand response programs as responsive resources to price and incentive signals, by modifying the system load factor can prevent severe ramps at net load, especially during peak load hours, and as a result, increase system flexibility while decreasing operational cost of the power system. In this paper, unlike the existing literature, the effect of the mentioned flexibility resources (both on the generation side and the demand side) in day-ahead operation planning under high penetration of wind generation units has been studied on the IEEE RTS 24-bus test system. Also, for this scheduling, a mixed-integer, two-stage, and tri-level adaptive robust optimization have been used, which is solved by column-and-constraint generation decomposition-based algorithm to clear the energy and ramping capacity reserve jointly.

S. M. Alavi, R. Ghazi,
Volume 18, Issue 1 (3-2022)
Abstract

One of the significant concerns in the MTDC systems is that voltage source converters (VSCs) do not hit their limits in the post-contingency conditions. Converters outage, DC line disconnection, and changeable output power of wind farms are the most common threats in these systems. Therefore, their destructive impact on neighboring AC systems should be minimized as much as possible. The fixed droop control is a better choice than others to deal with this, although it also has some limitations. Accordingly, a novel centralized droop-based control strategy considering N-1 contingency is proposed in this paper. It prevents converters from exceeding their limits while causes optimal power sharing and minimum DC link voltage deviation immediately, without secondary control layer. It also utilizes maximum wind power without curtailment. These properties improve the performance of the MTDC system in post-contingency conditions. The effectiveness of the proposed control method is validated by simulation of a 4-terminal VSC-MTDC system in MATLAB/Simulink R2016a.

A. Saffari, S. H. Zahiri, M. Khishe,
Volume 18, Issue 1 (3-2022)
Abstract

In this paper, multilayer perceptron neural network (MLP-NN) training is used by the grasshopper optimization algorithm with the tuning of control parameters using a fuzzy system for the big data sonar classification problem. With proper tuning of these parameters, the two stages of exploration and exploitation are balanced, and the boundary between them is determined correctly. Therefore, the algorithm does not get stuck in the local optimization, and the degree of convergence increases. So the main aim is to get a set of real sonar data and then classify real sonar targets from unrealistic targets, including noise, clutter, and reverberation, using GOA-trained MLP-NN developed by the fuzzy system. To have accurate comparisons and prove the GOA performance developed with fuzzy logic (called FGOA), nine benchmark algorithms GOA, GA, PSO, GSA, GWO, BBO, PBIL, ES, ACO, and the standard backpropagation (BP) algorithm were used. The measured criteria are concurrency speed, ability to avoid local optimization, and accuracy. The results show that FGOA has the best performance for training datasets and generalized datasets with 96.43% and 92.03% accuracy, respectively.

A. Karizi, S. M. Razavi, M. Taghipour-Gorjikolaie,
Volume 18, Issue 1 (3-2022)
Abstract

There are two serious issues regarding gait recognition. The first issue presents when the walking direction is unknown and the other one presents when the appearance of the user changes due to various reasons including carrying a bag or changing clothes. In this paper, a two-step view-invariant robust system is proposed to address these. In the first step, the walking direction is determined using five features of pixels of the leg region from gait energy image (GEI). In the second step, the GEI is decomposed into rectangular sections and the influence of changes in the appearance is confined to a small number of sections that could be eliminated by masking these sections. The system performs very well because the first step is computationally inexpensive and the second step preserves more useful information compared to other methods. In comparison with other methods, the proposed method shows better results.

T. Mendez, S. G. Nayak,
Volume 18, Issue 1 (3-2022)
Abstract

The need for low-power VLSI chips is ignited by the enhanced market requirement for battery-powered end-user electronics, high-performance computing systems, and environmental concerns. The continuous advancement of the computational units found in applications such as digital signal processing, image processing, and high-performance CPUs has led to an indispensable demand for power-efficient, high-speed and compact multipliers. To address those low-power computational aspects with improved performance, an approach to design the multiplier using the algorithms of Vedic math is developed in this research. In the proposed work, the pre-computation technique is incorporated that aided in estimation of the carries during the partial product calculation stage; that enhanced the speed of the multiplier. This design was carried out using Cadence NCSIM 90 nm technology. The comparative analysis between the proposed multiplier design and the multipliers from the literature resulted in a substantial improvement in power dissipation as well as delay. The research was extended to assess the designed architectures’ performance statistically, applying the independent sample t-test hypothesis.

E. O. Agbachi, L. U. Anih, E. S. Obe,
Volume 18, Issue 1 (3-2022)
Abstract

The paper presents the steady-state analysis of a new hybrid synchronous machine with a higher reluctance to excitation power ratio. The machine comprises a round rotor and a salient-pole machine elements that are mechanically coupled together and integrally wound. In each stator, there are two sets of identical poly-phase windings identifiable as the primary and secondary windings which are electrically isolated but magnetically coupled. The primary windings are connected in series between the two sections of the hybrid machine while the secondary windings are connected in anti-series and terminated across a balanced capacitor bank. The hybrid machine exhibits a special feature that when running at the synchronous speed, its effective XD/XQ ratio can be amplified and hence its output by the tuning of the variable capacitance bank which capacitive reactance XC neutralizes only the quadrature axis reactance XQ while the direct axis reactance XD remains unaffected. It is shown that at XD/XQ = 3, the reluctance component of the output power is 2.5 times the excitation power. The calculated and the measured results from the machine are in good conformity.

S. Fouladifard, H. Behnam, P. Gifani, M. Shojaeifard,
Volume 18, Issue 2 (6-2022)
Abstract

A semi-automatic method for the segmentation of the Left Ventricle in echocardiography images is presented. The manual segmentation of the left ventricle in all image sequences takes a lot of time. The proposed method is based on sparse representation and the design of overcomplete dictionaries based on prior knowledge of the intensity variation time curves (IVTC). We used the sparse recovery algorithm of orthogonal matching pursuit (OMP) to find the sparse coefficients of the IVTC signals. We obtained the histogram of non-zero sparse coefficients for all images. The binary images from successive frames were constructed via thresholding. In addition, we defined one image representing all the frames, dividing all the points of the heart into three groups. One group involved the points located inside the cavities in all frames. The second group included the points that belonged to the tissue in all frames. Points that in some frames are located inside the cavities and in some other frames are located inside the tissue. The results on 2D echocardiographic images acquired from both healthy and patient subjects showed good agreement with manual tracing and took a short time for the contour, including the whole left ventricle. According to the cardiology specialist, the value of ejection fraction is correctly calculated, and the error percentages were 0.83 and 2.33 for two healthy data samples. The proposed method can be applied to 3D echocardiography images to obtain the left ventricular volume. This approach also can be used for other types of medical images.

F. Asghariyehlou, J. Javidan,
Volume 18, Issue 2 (6-2022)
Abstract

This paper deals with the optimization of the CORDIC-based modified Gram-Schmidt (MGS) algorithm for QR decomposition (QRD) and presents a scalable algorithm with maximum throughput, the least possible latency, and hardware resources. The optimized algorithm is implemented on Xilinx Virtex 6 FPGA using ISE software as a fixed point with selected accuracy based on the results of MATLAB simulation. Using the loop unrolling technique with different coefficients, an attempt is made to reduce the latency and increase the throughput. In contrast, increasing the unrolling factor leads to a decrease in the frequency of the CORDIC unit as well as a decrease in the number of resources. As a result, there is a trade-off between the unrolling factor and the frequency of the CORDIC unit. By investigating the different unrolling factors, it is shown that the loop unrolling technique with a factor of 4 has the highest throughput with the value of 5.777 MQRD/s and the lowest latency with the value of 173 ns. Moreover, it is shown that throughput and latency are improved by 42.52% and 73.74% respectively compared to the not optimized case. The proposed method is also scalable for different sizes of m×m complex channel matrices, where log2 mN.

G. Das, R. Panda, L. Samantaray , S. Agrawal,
Volume 18, Issue 2 (6-2022)
Abstract

Multilevel optimal threshold selection is important and comprehensively used in the area of image processing. Mostly, entropic information-based threshold selection techniques are used. These methods make use of the entropy of the distribution of the grey levels of an image. However, entropy functions largely depend on spatial distribution of the image. This makes the methods inefficient when the distribution of the grey information of an image is not uniform. To solve this problem, a novel non-entropic method for multilevel optimal threshold selection is proposed. In this contribution, simple numbers (pixel counts), explicitly free from the spatial distribution, are used. A novel non-entropic objective function is proposed. It is used for multilevel threshold selection by maximizing the partition score using the adaptive equilibrium method. A new theoretical derivation for the fitness function is highlighted. The key to the achievement is the exploitation of the score among classes, reinforcing an improvised threshold selection process. Standard test images are considered for the experiment. The performances are compared with state-of-the-art entropic value-based methods used for multilevel threshold assortment and are found better. It is revealed that the results obtained using the suggested technique are encouraging both qualitatively and quantitatively. The newly proposed method would be very useful for solving different real-world engineering optimization problems.

S. Abolmaali,
Volume 18, Issue 2 (6-2022)
Abstract

In this article, a critical path identification method is proposed for ternary logic circuits. The considered structure for the ternary circuits is based on 2:1 multiplexers. Sensitization conditions for the employed ternary multiplexers are introduced. Moreover, static timing analysis and dynamic programming are utilized in the identification of true and false paths of the circuit for obtaining more realistic results in a reasonable time. An event-driven simulation engine is also developed for confirming the sensitization state of the identified paths. Some ternary arithmetic logic circuits are designed to depict the effectiveness of the proposed identification method. Simulation results show the correctness and efficiency of the proposed method.

T. Barforoushi, R. Heydari,
Volume 18, Issue 2 (6-2022)
Abstract

Curtailment of the production of wind resources due to uncertainty can affect the expansion of the transmission networks. The issue that needs to be addressed is how to expand the transmission network, which is accompanied by increasing wind energy utilization. In this paper, a new framework is proposed to solve the transmission expansion planning (TEP) problem in the presence of wind farms, considering wind curtailment cost. The proposed model is a risk-constrained stochastic bi-level problem that, the difference between the expected social welfare and investment cost is maximized at the upper level where optimal decisions on expansion plans are adopted by the independent system operator (ISO). To make the best use of wind generation resources, a new term called wind power curtailment cost is added to the upper level. Also, the risk index is included in expansion decisions. The market-clearing is considered at the lower level, aiming at maximizing social welfare. Uncertainties relating to wind power and the forecasted demand are modeled by sets of scenarios. Using duality theory, the proposed framework is modeled as mixed-integer linear programming (MILP) problem. The model is examined using the classical Garver’s six-bus test system and the IEEE 24-bus reliability test system (RTS). The results show that by considering the wind curtailment cost, the transmission network is expanded in a way that increases the wind energy utilization factor from 92.05% to 95.17%.

A. Jabbari,
Volume 18, Issue 2 (6-2022)
Abstract

Low-speed brushless permanent magnet machines are ideal for use in gearless propulsion systems. It is important to provide a precise analytical model to determine the performance characteristics of these machines. One of the challenges in designing permanent magnet machines is the elimination of the pulsating torque due to the presence of cogging torque and torque ripple components. The use of dummy slots (auxiliary teeth) is one of the most common methods of reducing pulsating torque phenomenon. In this paper, an accurate two-dimensional analytical model for calculating the magnetic vector potential in brushless permanent magnet machines is presented, taking into account the effect of stator slots, stator dummy slots, the magnetic direction of permanent magnets and phase winding style. The proposed analytical method is based on solving Laplace’s and Poisson’s equations using the separation of variables method for given regions in the subdomain approach. In the proposed method, to achieve a simpler analytical model, by changing the variable, the polar coordinate system is converted to a quasi-Cartesian coordinate system. Therefore, in mathematical terms, the hyperbolic functions are used instead of exponential ones. To validate the proposed model accuracy, the performance of a 14 kW low-speed brushless permanent magnet motor is calculated analytically and compared with the results of the numerical method and the experimental tests. Comparison of the performance results of this motor shows the consistency of analytical, numerical, and experimental results.

S. Saeedinia, M. A. Shamsi-Nejad, H. Eliasi,
Volume 18, Issue 2 (6-2022)
Abstract

This paper proposes a grid-connected single-phase micro-inverter (MI) with a rated power of 300 W and an appropriate control strategy for photovoltaic (PV) systems. The proposed MI is designed based on a two-stage topology. The first stage consists of a SEPIC DC-DC converter with high voltage gain to step up the voltage of the PV panel and harness the maximum power, while the second stage includes a full-bridge DC-AC converter. The advantages of the proposed MI are the use of fewer components to provide suitable output voltage level for connection to a single-phase grid, continuous input current, limited voltage stress on the switch, high efficiency, long operational lifetime, and high reliability. Lower input current ripple and the presence of film capacitors in the power decoupling circuit increase the lifetime and reliability of the proposed MI. In the proposed MI, the active power decoupling circuit, which is normally used in a typical single-stage SEPIC-based MI, is eliminated to achieve both a long lifetime and high efficiency. The operating principles of the proposed MI are analyzed under different conditions. The results of design and simulation confirm the advantages and proper performance of the proposed MI.

Keyhan Hosseini,
Volume 18, Issue 2 (6-2022)
Abstract

Anisotropic media appear regularly in electromagnetic wave engineering. The finite-difference time-domain (FDTD) method is a robust technique to model such media. However, the value of the time step in the FDTD algorithm is bounded by the Courant-Friedrichs-Lewy (CFL) condition. In this paper, a simple analytical approach is developed using the Gershgorin circle theorem to derive a point-wise closed-form relation for the CFL condition in bounded inhomogeneous anisotropic media. The proposed technique includes objects of arbitrary shapes with straight, tilted, or curved interfaces located in a computational space with uniform or adaptive gridding schemes. Both axial and non-axial anisotropies are considered in the analysis. The proposed method is able to investigate the effect of boundaries and interfaces on the stability of the algorithm. It is shown that in the presence of an interface between two anisotropic media, the von-Neumann criterion is not able to predict the stability bound for specific ranges of the permittivity tensor components and unit cell aspect ratios. Exploiting the proposed closed-form formulations, it is possible to tune the CFL time step and avoid the temporal instability by the wise selection of the gridding scheme especially in curved boundaries where subcell modelings such as Yu-Mittra formalism are applicable. Some illustrative examples are provided to verify the method by comparing the results with those of the eigenvalue analysis and time-domain simulations.

M. Khalaj-Amirhosseini,
Volume 18, Issue 3 (9-2022)
Abstract

Linear antenna arrays are synthesized to have maximum directivity for a specified beamwidth. The directivity is maximized subject to a given beamwidth such as null to null or half power one. The excitation currents are obtained using a matrix equation obtained from the Lagrange multiplier method. The performance of the proposed method is studied by means of some examples. The synthesized arrays have the pre-specified beamwhidths and their directivity is close to the number of elements.

M. Soruri, S. M. Razavi, M. Forouzanfar,
Volume 18, Issue 3 (9-2022)
Abstract

Power amplifier is one of the main components in the RF transmitters. It must provide various stringent features that can lead to complicating the design. In this paper, a new optimizing method based on the inclined planes system optimization algorithm is presented for the design of a discrete power amplifier. It is evaluated in a 2.4-3 GHz power amplifier, which is designed based on “Cree’s CGH40010F GaN HEMT”. The optimization goals are input and output return losses, Power Added Efficiency, and Gain. Large signal simulation of the optimized power amplifier shows a good performance across the bandwidth. In this frequency range, the input and output return losses are about lower than -10 dB, the Power Added Efficiency is greater than 51%, while the Gain is higher than 13.5 dB. A two-tone test with a frequency space of 1 MHz is applied for the linearity evaluation of the designed power amplifier. The obtained result shows that the power amplifier has good linearity with a low memory effect.


Page 9 from 11     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.