Search published articles


Showing 23 results for Pm

Ali Jabbari, Ali Badran,
Volume 19, Issue 3 (9-2023)
Abstract

Cost reduction, increased efficiency and reliability, extended service life, reduced noise and vibration, and environmental friendliness are critical for new generation wind turbines and electric vehicles. Segmented Hybrid Permanent Magnet (SHPM) machines, on the other hand, which are primarily segmented PMs combined with different materials, dimensions, and magnetization directions, offer a way to meet these needs. In this study, we present nine topologies of segmented PM-rotor SHPM generators based on the Taguchi experimental design method, while presenting a simple and accurate model based on subdomain method for estimating the magnetic performance characteristics of SHPM machines. An analytical model is provided. Magnetic partial differential equations (MPDEs) are represented in a pseudo-Cartesian coordinate system, and with appropriate boundary conditions (BC) and interface conditions (IC), the general solution and its Fourier coefficients are extracted using a variable separation approach. The performance characteristics of nine of the SHPM machines studied were compared semi-analytically and numerically. Two prototype SHPM machines were manufactured and semi-analytical modeling results were compared with finite element analysis (FEA) methods and experimental testing (load mode) on a generator. The FEA simulation and experimental test results have a maximum error rate of about 3, confirming the high accuracy of the provided semi-analytical model. We compare the induced voltage, torque ripple and magnetic torque among the investigated topologies.
Reza Mirzahosseini, Elham Rahimi Namaghi,
Volume 19, Issue 4 (12-2023)
Abstract

In this paper, a new topology of fractional slot concentrated winding double rotor axial flux permanent magnet synchronous motor (FSCW-DRAFPMSM) is introduced. The desired structure consists of a nonslotted stator core and two rotor discs. The pole number of the two rotors is different and these two rotors rotate at different speeds in opposite directions. A sample motor with an output power of 200 Watts is designed with the proposed structure. The two rotors of this sample motor rotate with speeds of 1200 and 857 rpm. The Finite Element Method (FEM) is employed to evaluate the performance of the proposed structure. Some performance characteristics of the case study machine, such as the Back EMF, input power, and electromagnetic torques of two rotors are presented to confirm the correctness of the operation of the proposed structure. In addition, the shifting technique is used to improve the Back EMF waveform of the machine. An analytical formula is proposed for calculating the fundamental component of the Back EMF waveform. The accuracy of the formula is approved by FEM.
Mehrdad Kamali, Behrooz Rezaeealam, Farhad Rezaee-Alam,
Volume 21, Issue 1 (3-2025)
Abstract

This paper investigates the operational performance of a novel Double-Rotor Hybrid Excitation Axial Flux Switching Permanent Magnet (DRHE-AFSPM) machine, combining the strengths of Flux-Switching Machines and Hybrid Excitation Synchronous Machines. The study analyzes the machine's structure and magnetic field adjustment principles, including inductance and flux linkage characteristics. A mathematical model is derived and a vector control-based drive system is established. The loading capacity of the DRHE-AFSPM motor is examined at low speeds using an id = 0 control approach based on a stage control strategy. For high-speed operation, a field-weakening control strategy is implemented, with the field-weakening moment determined based on the voltage difference. Simulations and experimental results demonstrate the DRHE-AFSPM motor's ability to fully utilize its torque with id = 0 control, highlighting its strong load capacity. Compared to speed-based field-weakening control strategies, the voltage difference-based approach offers improved inverter output voltage utilization and a broader speed regulation range. These findings suggest that the DRHE-AFSPM motor is a promising candidate for in-wheel motor applications in electric vehicles (EVs).

Page 2 from 2     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.