Search published articles


Showing 9 results for Adaptive Filter

M. Sh. Esfand Abadi, V. Mehrdad, M. Noroozi,
Volume 5, Issue 3 (9-2009)
Abstract

In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms are established by this general formalism. In these algorithms, the filter coefficients are partially updated rather than the entire filter coefficients at every iteration which is computationally efficient. Following this, the transient and steady-state performance analysis of this family of adaptive filter algorithms are studied. This analysis is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. We demonstrate the performance of the presented algorithms through simulations in system identification and acoustic echo cancellation scenarios. The good agreement between theoretically predicted and actually observed performances is also demonstrated
M. Shams Esfand Abadi, S. Nikbakht,
Volume 7, Issue 2 (6-2011)
Abstract

Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (TD-VSS-APA), the TD set-membership NLMS (TD-SM-NLMS), the TD-SM-APA, the TD selective partial update NLMS (TD-SPU-NLMS), and the TD-SPU-APA are presented. In TD-VSS adaptive filters, the step-size changes during the adaptation which leads to improve the performance of the algorithms. In TD-SM adaptive filter algorithms, the filter coefficients are not updated at each iteration. Therefore, the computational complexity is reduced. In TD-SPU adaptive algorithms, the filter coefficients are partially updated which reduce the computational complexity. We demonstrate the good performance of the proposed algorithms thorough several simulation results in TD adaptive noise cancellation (TD-ANC) for image restoration. The results are compared with the classical TD adaptive filters such as TD-LMS, TD-NLMS, and TD-APA
M. Shams Esfand Abadi, M.s. Shafiee,
Volume 9, Issue 1 (3-2013)
Abstract

This paper presents a new variable step-size normalized subband adaptive filter (VSS-NSAF) algorithm. The proposed algorithm uses the prior knowledge of the system impulse response statistics and the optimal step-size vector is obtained by minimizing the mean-square deviation(MSD). In comparison with NSAF, the VSS-NSAF algorithm has faster convergence speed and lower MSD. To reduce the computational complexity of VSSNSAF, the VSS selective partial update NSAF (VSS-SPU-NSAF) is proposed where the filter coefficients are partially updated in each subband at every iteration. We demonstrated the good performance of the proposed algorithms in convergence speed and steady-state MSD for a system identification set-up.
M. Geravanchizadeh, S. Ghalami Osgouei,
Volume 10, Issue 4 (12-2014)
Abstract

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS leads to better performance of adaptive filter. Furthermore, convex combination of two adaptive filters improves its performance. In this paper, new convex combinational adaptive filtering methods in the framework of speech enhancement system are proposed. The proposed methods utilize the idea of normalization and fractional derivative, both in the design of different convex mixing strategies and their related component filters. To assess our proposed methods, simulation results of different LMS-based algorithms based on their convergence behavior (i.e., MSE plots) and different objective and subjective criteria are compared. The objective and subjective evaluations include examining the results of SNR improvement, PESQ test, and listening tests for dual-channel speech enhancement. The powerful aspects of proposed methods are their low complexity, as expected with all LMS-based methods, along with a high convergence rate.
H. Zayyani, M. Dehghan,
Volume 11, Issue 1 (3-2015)
Abstract

This paper presents a simple and easy implementable Least Mean Square (LMS) type approach for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS type algorithm is based on a second order recursion for the complex voltage derived from Clarke's transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real parameter (not complex) which can be efficiently implemented by DSP. In unbalanced situations, simulation experiments show the advantages and drawbacks of the proposed algorithm in comparison to Complex LMS (CLMS) and Augmented Complex LMS (ACLMS) methods
M. R. Mosavi, Z. Shokhmzan,
Volume 11, Issue 3 (9-2015)
Abstract

The Global Positioning System (GPS) signals are very weak signal over wireless channels, so they are vulnerable to in-band interferences. Therefore, even a low-power interference can easily spoof GPS receivers. Among the variety of GPS signal interference, spoofing is considered as the most dangerous intentional interference. The spoofing effects can mitigate with an appropriate strategy in the receiver. In this paper, we use methods of adaptive filter based on Least Mean Squares (LMS) and Normalized Least Mean Squares (NLMS) algorithms in-order to defense against spoofing. The proposed techniques are applied in the acquisition stage of the receiver. The proposed methods have been implemented on real dataset. The results explain that the suggested algorithms significantly decrease spoofing. Also, they improve Position Dilution of Precision (PDOP) parameter. Based on the results, NLMS algorithm has better performance than LMS algorithm.

AWT IMAGE


M. Shams Esfand Abadi, H. Mesgarani, S. M. Khademiyan,
Volume 13, Issue 3 (9-2017)
Abstract

The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subfilter changes according to the largest decrease in mean square deviation. The simulation results show that the proposed VSS-WTDLMS has faster convergence rate and lower misadjustment than ordinary WTDLMS.


G. Alipoor,
Volume 13, Issue 4 (12-2017)
Abstract

Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions that can tackle these problems by nonlinearly mapping the original input space to the reproducing kernel Hilbert spaces. The aim of the current paper is to exploit kernel adaptive filters within the ALE structure for speech signal enhancement. Performance of these nonlinear algorithms is compared with that of their linear as well as nonlinear Volterra counterparts, in the presence of various types of noises. Simulation results show that the kernel LMS algorithm, as compared to its counterparts, leads to a higher improvement in the quality of the enhanced speech. This improvement is more significant for non-Gaussian noises.

P. Teymouri, M. R. Mosavi, M. Moazedi,
Volume 14, Issue 3 (9-2018)
Abstract

Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive filters to eliminate interference, obtain an estimate of interfering signal and subtract that from the corrupted signal. So, what remains in the output is the desired signal. Here, for updating the filter coefficients adaptive algorithms in both time (statistical and deterministic) and transform domain will be studied. The proposed adaptive filter is applied to a batch of spoofing GPS data in pseudo-range level. The results indicate that all investigated algorithms are able to reduce positioning steady-state miss-adjustment up to 70 percent. In this context, the variable step-size least mean square algorithm performs better than others do.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.