Search published articles


Showing 2 results for All-Pass Filter

Dr B Chaturvedi, Dr J Mohan,
Volume 11, Issue 4 (12-2015)
Abstract

In this paper, a new voltage controlled first order all-pass filter is presented. The proposed circuit employs a single differential voltage dual-X second generation current conveyor (DV-DXCCII) and a grounded capacitor only. The proposed all-pass filter provides both inverting and non inverting voltage-mode outputs from the same configuration simultaneously without any matching condition. Non-ideal analysis along with sensitivity analysis is also investigated. The proposed circuit has low active and passive sensitivities. As an application the proposed all-pass filter is connected in cascade to get higher order filter. The theoretical results are validated thorough PSPICE simulations using TSMC 0.18µm CMOS process parameters.

AWT IMAGE


A. Kumar, B. Chaturvedi,
Volume 14, Issue 2 (6-2018)
Abstract

This paper introduces four new resistorless circuits of first-order current-mode all-pass filter (CMAPF) based on dual-X current conveyor transconductance amplifier (DXCCTA). All the four circuits use a single DXCCTA and a capacitor for their realization. The main features of the proposed CMAPFs are: use of minimum active and passive components, resistorless realization, electronically adjustable pole frequency, easily cascadable, good sensitivity performance with respect to active and passive elements, low total harmonic distortion of output current (0.74%) and good operating frequency range (39.2 MHz). The non-ideal analysis of the proposed circuits has also been explored. Moreover, two applications of the proposed first-order CMAPF in terms of second order CMAPF and current-mode quadrature oscillator are also presented. HSPICE simulations have been carried out with 0.18 µm CMOS process parameters to validate the proposed circuits.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.