Search published articles


Showing 3 results for Chiral

Z. Abolhasani, M. Tayarani,
Volume 5, Issue 4 (12-2009)
Abstract

In this paper, chiral E-shaped resonators are used in a waveguide. Direction of EM wave and position of resonators for effective excitation is studied and various resonances of E-shaped resonators are determined. As a consequence an analytical equivalent circuit model is proposed. Finally, an array of these resonators is used to realize a wide reject band. The resulted band stop filter performance is simulated and a rejection level of almost 40 dB is achieved to confirm the effectiveness of the idea. This stopband filter is used in cascade with a bandpass filter to suppress its spurious response.
D. Zarifi, M. Soleimani, A. Abdolali,
Volume 10, Issue 4 (12-2014)
Abstract

In this paper, the propagation of electromagnetic waves through an infinite slab of uni- or bi- axial chiral medium is analytically formulated for an arbitrary incidence using 4×4 matrix method. In this powerful method, a state vector differential equation is extracted whose solution is given in terms of a transition matrix relating the tangential components of electric and magnetic fields at the input and output planes of the uni- or bi- axial chiral layer. The formulas of the reflection and transmission are then derived. Also, the presented method is verified by some typical examples and the results are compared with the results obtained by the other available methods.
G. S. Kumar, G. Mamatha,
Volume 19, Issue 1 (3-2023)
Abstract

In today's technological environment, designing the Static Random Access Memory (SRAM) is most vital and critical memory devices. In this manuscript, two kinds of 5TSRAM are designed using different CNTFET such as Dual-ChiralityGate all around (GAA) CNTFET and Ballistic wrap gate CNTFET based 5T SRAM cell designs for enhancing the read/write assist process. Here, the proposed Dual-ChiralityGAA-CNTFET based 5T-SRAM has two cross-coupled inverters using one access transistor that is connected to the bit line (BL) and word line (WL) through minimum supply voltage. Instead of cross-coupled inverter circuit, the BWG-CNTFET based 5T-SRAM cell is intended for achieving less power and improved read/write assist process. Also, one transistor is executed as low-threshold (LVT) device in the proposed BWG-CNTFET based 5T-SRAM. Thus, proposed two kinds of 5T SRAM cells increases the read/write assist operation and reduce the leakage current/ power. The simulation of the proposed two kinds of 5T SRAM cell is done by HSPICE simulation tool and the performance metrics are calculated. Therefore, the proposed Dual-ChiralityGAA-CNTFET based 5T-SRAM cell design has attained 11.31%, 51.47% lower read delay, 44.44%, 26.33% lower write delay, 36.12%, 45.28% lower read power, 34.5% , 22.41% lower write power, 37.4%, 15.3% higher read SNM and 35.8%, 12.09% higher write SNM than Double gate carbon nanotube field effect transistors (DG CNTFET) and state-of-art method respectively. Similarly, the proposed BWG-CNTFET 5T SRAM cell design has attained 45.53%, 38.77% lower write delay, 56.67%, 45.64% lower read delay, 58.4%, 56.75% lower read power, 49.66%, 28.56% lower write power, 35.32%, 12.7% higher read SNM and 45.8%, 15.6% higher write SNM than Reduced Power with Enhanced Speed (RPES) approach and state-of-art method respectively.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.