Search published articles


Showing 2 results for Compact Size

M. Hajebi, M. Danaeian, E. Zarezadeh,
Volume 13, Issue 3 (9-2017)
Abstract

Using composite right-left handed (CRLH) transmission line concept, a novel miniaturized dual notch band filter (DNBF) is proposed. The suggested DNBF consists of an interdigital transmission line (ITL), split ring resonators (SRRs) and complementary split ring resonators (CSRRs). Since the resonance frequency of the SRRs and CSRRs are quite independent of each other, the dual notch bands of the proposed filter can be separately controlled and shifted by changing the dimension of the SRRs and CSRRs. In this paper, the reject bands are designed for WLAN (2.4 GHz) and WiMAX (3.5 GHz) to reject these frequency bands from the ultra-wide band communication systems. The simulation results show that the transmission response has more than 32 dB rejections near each band. To validate the design concept, the proposed NBPF has been fabricated and tested. Experimental verification is provided and good agreement has been found between simulation and measurement. To the best of our knowledge, the proposed NBPF is more compact in comparison with other reported filters.

M. A. Trimukhe, B. G. Hogade,
Volume 15, Issue 2 (6-2019)
Abstract

In this paper a particle swarm optimization (PSO) algorithm is presented to design a compact stepped triangle shape antenna in order to obtain the proper UWB bandwidth as defined by FCC. By changing the various cavity dimensions of the antenna, data to develop PSO program in MATLAB is achieved. The results obtained from the PSO algorithm are applied to the antenna design to fine-tune the bandwidth. Bandwidth optimization for ultra-wideband frequency of 3.1 GHz to 10.6 GHz is achieved by applying PSO algorithm. High-Frequency Structure Simulator (HFSS) software tool is used for the simulation. An optimized antenna is fabricated, tested and test results are found in accordance with simulation results.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.