Search published articles


Showing 6 results for Demand Response

A. Zakariazadeh, Sh. Jadid,
Volume 10, Issue 2 (6-2014)
Abstract

Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also, the optimal scheduling of MGs will be result in reliable and economical operation of distribution system. In this paper, an operational planning model of a MG which considers multiple demand response (DR) programs is proposed. In the proposed approach, all types of loads can participate in demand response programs which will be considered in either energy or reserve scheduling. Also, the renewable distributed generation uncertainty is covered by reserve prepared by both DGs and loads. The novelty of this paper is the demand side participation in energy and reserve scheduling, simultaneously. Furthermore the energy and reserve scheduling is proposed for day-ahead and real-time. The proposed model was tested on a typical MG system in connected mode and the results show that running demand response programs will reduce total operation cost of MG and cause more efficient use of resources.
Sh. Jadid, S. A. H. Bahreyni,
Volume 10, Issue 4 (12-2014)
Abstract

Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model
S. G. M. Rokni, M. Radmehr, A. Zakariazadeh,
Volume 15, Issue 1 (3-2019)
Abstract

In this paper, a new energy management method is proposed for residential consumers based on a distributed algorithm. Consumers could participate in demand response programs by managing their schedulable and deferrable loads as well as using of photovoltaic (PV) systems. In the proposed method, the Alternating Direction Method of Multiplier (ADMM) is used to model the distributed management and scheduling of buildings electricity consumption. By implementing the distributed algorithm, a large number of residential consumers can update their consumption parameters by online communication with the central controller in parallel. The results confirm that residential customers are able to reduce their electricity bill by modifying their electricity consumption patterns without reducing their welfare.

M. Aghamohamadi, M. Samadi, M. Pirnahad,
Volume 15, Issue 1 (3-2019)
Abstract

The integration of different energy types and new technological advances in multi-energy infrastructures, enable energy hubs (EH) to supply load demands at a lower cost which may affect the price responsive loads, since the energy could be offered with a lower price at the EH output ports, compared to the upstream energy markets. In this paper a new EH operation model is proposed by which the optimal responsive load modifications against the obtained EH output energy prices as well as the EH schedules are determined. To achieve this goal, a tri-step approach is proposed. At the first step the EH output energy prices are obtained for each energy type in each hour of the scheduling horizon. These energy prices are based on the EH hourly operation and would change as the EH operation changes. At the second step, the optimal responsive load modifications against the obtained EH output energy prices are simulated using the new proposed integrated responsive load model which is capable to model the price responsive loads in multi-energy systems for any type of energy carrier. Since, any changes in load demand (due to its responsiveness) can jeopardize the EH power balance constraint, the obtained EH operation would be infeasible, considering the new modified load pattern. To cope with this interdependency, a new iterative methodology is proposed at the third step in which, the EH optimal operation + EH output energy price determination + responsive load modification is implemented in a loop till the 24 hour aggregated load modification becomes lower than the pre-determined convergence tolerance. Based on the obtained results from solving the proposed methodology through a comprehensive case study, the aggregated supplied energy has been increased by 7.3%, while, the customers payments has reduced by 14.6%. Accordingly, the customer’s satisfaction has increased.

A. Mohammadi, S. Soleymani, B. Mozafari, H. Mohammadnezhad-Shourkaei,
Volume 17, Issue 2 (6-2021)
Abstract

This paper proposes an advanced distribution automation planning problem in which emergency-based demand response plans are incorporated during service restoration process. The fitness function of this planning problem consists of various costs associated with fault occurrence in electric distribution systems consisting of the total yearly cost of customers’ interruptions, the total annualized investment cost of control and protection devices deployment, including sectionalizing switches, circuit breakers, and fuses and the total annual cost of performing emergency-based demand response programs in the service restoration process. Moreover, the customers’ behavior in participating in the service restoration process is also modeled through using an S-function. The proposed advanced distribution automation planning method is implemented on the fourth bus of the Roy Bilinton test system in order to evaluate its efficacy. The obtained results show that the reliability indices and the total cost of distribution automation are reduced by about 9% and 12% more than the published methods for distribution automation, respectively.

Hamid Karimi,
Volume 20, Issue 1 (3-2024)
Abstract

This paper proposes a stochastic optimization problem for local integrated hydrogen-power energy systems. In the proposed model, the integrated system tries to reduce the day-ahead operation costs using dispatchable resources, renewable energy resources, battery energy storage systems, demand response programs, and energy trading with the upstream network. Also, the integrated system is able to transact electricity with the upstream network to get more benefits. When the generation of renewable resources is high, the integrated system can convert the surplus electricity to hydrogen by power-to-gas units. The generated hydrogen can be sold to different industries or stored in the hydrogen tank storage. During peak hours, the stored hydrogen can be imported into the gas-to-power unit to generate the required electricity. The sector coupling between electricity and hydrogen provides more flexibility for integrated systems and is an effective solution to control the uncertainty of renewable energy resources in order to increase the power and energy flexibilities. The simulation results show that the proposed sector coupling provides the opportunity for electricity and hydrogen trading for integrated system. The benefit of the integrated system by electricity and hydrogen trading with the upstream network and different industries are $ 88.39, and $ 6846, respectively.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.