Showing 8 results for Electric Vehicle
J. Soleimani, A. Vahedi, S. M Mirimani,
Volume 7, Issue 4 (12-2011)
Abstract
Recently, Inner permanent magnet (IPM) synchronous machines have been
introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction
applications due to their unique merits. In order to achieve maximum torque per ampere
(MTPA), optimization of the motor geometry parameters is necessary. This paper Presents
a design method to achieve minimum volume, MTPA and minimum value of cogging
torque for traction IPM synchronous machines and simulation in order to extract the output
values of motor is done using 3D-Finite Element Model, that has high level of accuracy and
gives us a better insight of motor performance. Then presents back EMF, power factor,
cogging torque, Flux density, torque per ampere diagram, CPSR (constant power speed
ratio), torque per speed diagram in this IPM synchronous machine. This study can help
designers in design approach of such motors.
D. Kishan, P. S. R. Nayak, B. Naresh Kumar Reddy,
Volume 16, Issue 1 (3-2020)
Abstract
In recent years, the popularity of wireless inductive power transfer (WIPT) system for electric vehicle battery charging (EVBC) is always ever-increasing. In the WIPT inductively coupled coil structure is the heart of the system and the mutual inductance (MI) between the coupled coils is the key factor for effective power transfer. This paper presents the analysis of mutual inductance between the spiral square coils based on the cross-sectional area ratio of spiral circular and spiral square coupled coils. The analytical computed MI values are compared with FEM (Ansys Maxwell) simulation and Experimental computed values. Finally, the designed spiral square coils are implemented in a laboratory prototype model and at the receiver side for effective electric vehicle (EV) battery charging a closed-loop PID controller is implemented for DC-DC buck converter. The effectiveness of the proposed controller has been tested by providing sudden changes in mutual coupling and change in reference value. The proposed system is suitable for both stationary and dynamic wireless EVBC.
M. Sedighizadeh, S. M. M. Alavi, A. Mohammadpour,
Volume 16, Issue 3 (9-2020)
Abstract
Regarding the advances in technology and anxieties around high and growing prices of fossil fuels, government incentives increase to produce cleaner and sustainable energy through distributed generations. This makes trends in the using microgrids which consist of electric demands and different distributed generations and energy storage systems. The optimum operation of microgrids with considering demand-side management increases efficiency and reliability and maximize the advantages of using distributed generations. In this paper, the optimal operation scheduling and unit commitment of generation units installed in a microgrid are investigated. The microgrid consists of technologies based on natural gas that are microturbine and phosphoric acid fuel cell and technologies based on renewable energy, including wind turbine and photovoltaic unit along with battery energy storage system and plug-in electric vehicle commercial parking lot. The goal of the paper is to solve a multi-objective problem of maximizing revenues of microgrid operator and minimizing emissions. This paper uses an augmented epsilon constraint method for solving the multi-objective problem in a stochastic framework and also implements a fuzzy-based decision-maker for choosing the suitable optimal solution amid Pareto front solutions. This new model implements the three type of the price-based and incentive-based demand response program. It also considers the generation reserve in order to enhance the flexibility of operations. The presented model is tested on a microgrid and the results demonstrate the efficacy of the proposed model economically and environmentally compared to other methods.
M. Habibzadeh, S. M. Mirimani,
Volume 17, Issue 4 (12-2021)
Abstract
The role of energy management in hybrid and electric vehicles (EVs) is an important concern to enhance operational performance and provide the defined efficiency targets in transportation. The power conversion stage as an interface between storage units and the DC-link of the three-phase inverter forms a major challenge in EVs. In this study, a control approach for DC-bus voltage, which utilizes a hybrid energy storage system (HESS) for EV applications, has been proposed. A high-energy-density battery pack and an ultra-capacitor, which owns a high-power density, form the hybrid energy storage system. The proposed approach allows full utilization of the stored energy in the storage devices, and also adds a voltage boost feature to the DC-bus. In the proposed control structure, a motor drive based on SVM-DTC is used to track the flux and torque components using regulators with the space vector modulation. The optimal DC-bus voltage can be tracked by incorporating the motor drive stage with a HESS. This integration results in less processed power. This article presents the simulation results toward confirming and verifying the effectiveness of the proposed approach.
V. M. Zavylov, I. Y. Semykina, S. A. Abeidulin, E. A. Dubkov, A. S. Veliliaev,
Volume 18, Issue 1 (3-2022)
Abstract
The promising element of the infrastructure of unmanned electric vehicles is wireless chargers. The central part of such systems is a resonant circuit that provides wireless power transfer. The article discusses a set of criteria used for making the rational choice of the resonant circuit parameters. Such criteria include the efficiency, the current transfer coefficient, the excess voltage on the resonant circuit capacitors over the input voltage, the ratio between the transmitting circuit current and the receiving one. For the resonant circuit with fixed coils size and fixed resonant frequency, the families of curves were obtained via parametric analysis to show how these criteria change depending on the inductance and capacitance of the resonant circuit. The obtained dependencies allow choosing the rational inductances and capacitances of the resonant circuit, providing for a given size and a given value of the input voltage the highest conveyed power with the highest efficiency at the minimum voltage class of capacitors and the minimum current of semiconductor switches. The results of the parametric analysis were confirmed experimentally.
Vahid Bagheri, Amir Farhad Ehyaei, Mohammad Haeri,
Volume 18, Issue 4 (12-2022)
Abstract
In distribution networks, failure to smooth the load curve leads to voltage drop and power quality loss. In this regard, electric vehicle batteries can be used to smooth the load curve. However, to persuade vehicle owners to share their vehicle batteries, we must also consider the owners' profits. A challenging problem is that existing methods do not take into account the vehicle owner demands including initial and final states of charge and arrival and departure times of vehicles. Another problem is that battery capacity of each vehicle varies depending on the type of vehicle; which leads to uncertainties in the charging and discharging dynamics of batteries. In this paper, we propose a modified mean-field method so that the load curve is smoothed, vehicle owner demands are met, and different capacities of electric vehicle batteries are considered. The simulation results show the effectiveness of the proposed method.
Ali Jabbari, Hassan Moradzadeh, Rasul Lotfi,
Volume 19, Issue 4 (12-2023)
Abstract
Along with the development of hybrid electric vehicles, researchers are trying to reduce existing limitations such as noise and environmental concerns and improve the efficiency and reliability of these systems. The use of magnetic gear technology is one of the solutions that have been recently proposed to remove these limitations and achieve higher benefits. In this paper, a mechanically coupled magnetic geared (MCMG) machine has been introduced. An accurate analytical model based on the subdomain method is presented to calculate the magnetic machine performance. To do this, first, a pseudo-Cartesian coordinate system is specified, and then the constitutive equations, i.e. Laplace’s and Poisson’s equations are rewritten for different regions of the machine. The separation of variables method was used to determine the general solution of the equations. Then by applying appropriate interface and boundary conditions, the Fourier coefficients of the equations were determined. To verify the analytical results, the performance of the proposed magnetic machine is numerically simulated using the finite element method in commercial software, and then a prototype is built and tested in three distinct modes. By comparing the analysis results with numerical simulation results and experimental tests, the high accuracy of the proposed analytical model can be confirmed.
Milad Babalou, Hossein Torkaman, Edris Pouresmaeil, Nazanin Pourmoradi,
Volume 20, Issue 2 (6-2024)
Abstract
In this paper, a dual-active bridge converter based on the utilization of two transformers is presented. The principles of operation, switching strategy, and transmission power characteristics of the proposed converter under normal operation are discussed, comprehensively. Moreover, the RMS current of two transformers with different values of inductances of the inductors that are in series with the transformers; is discussed. The operation of the proposed dual active bridge (DAB) converter under the open-circuit failure of transformers is studied. In addition, the loss distribution of the proposed converter in different powers is investigated. The proposed dual-transformer-based dual-active bridge converter is compared with the presented converters. Finally, the proposed converter with a low-voltage side (VL= 300 V), the switching frequency of power MOSFETs (fs= 50 kHz), and an accurate model of the electric battery at a high-voltage side (VH= 450 V) are simulated to verify the way of charging and discharging the electrical battery with the proposed converter under normal and open-circuit fault of transformers.