T. Barforoushi, M. P. Moghaddam, M. H. Javidi, M. K. Sheik-El-Eslami,
Volume 2, Issue 2 (4-2006)
Abstract
Medium-term modeling of electricity market has essential role in generation
expansion planning. On the other hand, uncertainties strongly affect modeling and
consequently, strategic analysis of generation firms in the medium term. Therefore, models
considering these uncertainties are highly required. Among uncertain variables considered
in the medium term generation planning, demand and hydro inflows are of the greatest
importance. This paper proposes a new approach for simulating the operation of power
market in medium-term, taking into account demand and hydro inflows uncertainties. The
demand uncertainty is considered using Monte-Carlo simulations. Standard Deviation over
Expected Profit (SDEP) of generation firms based on simulation results is introduced as a
new index for analyzing the influence of the demand uncertainty on the behavior of market
players. The correlation between capacity share of market players and their SDEP is also
demonstrated. The uncertainty of inflow as a stochastic variable is dealt using scenario tree
representation. Rational uncertainties as strategic behavior of generation firms, intending to
maximize their expected profit, is considered and Nash-Equilibrium is determined using the
Cournot model game. Market power mitigation effects through financial bilateral contracts
as well as demand elasticity are also investigated. Case studies confirm that this
representation of electricity market provides robust decisions and precise information about
electricity market for market players which can be used in the generation expansion
planning framework.
A. R. Moradi, Y. Alinejad-Beromi, K. Kiani,
Volume 13, Issue 1 (3-2017)
Abstract
Congestion and overloading for lines are the main problems in the exploitation of power grids. The consequences of these problems in deregulated systems can be mentioned as sudden jumps in prices in some parts of the power system, lead to an increase in market power and reduction of competition in it. FACTS devices are efficient, powerful and economical tools in controlling power flows through transmission lines that play a fundamental role in congestion management. However, after removing congestion, power systems due to targeting security restrictions may be managed with a lower voltage or transient stability rather than before removing. Thus, power system stability should be considered within the construction of congestion management. In this paper, a multi-objective structure is presented for congestion management that simultaneously optimizes goals such as total operating cost, voltage and transient security. In order to achieve the desired goals, locating and sizing of series FACTS devices are done with using components of nodal prices and the newly developed grey wolf optimizer (GWO) algorithm, respectively. In order to evaluate reliability of mentioned approaches, a simulation is done on the 39-bus New England network.
S. A. Mozdawar, A. Akbari Foroud, M. Amirahmadi,
Volume 18, Issue 1 (3-2022)
Abstract
This paper scrutinizes the impact of different renewable energy sources (RES) development policies on competitiveness within multiple electricity markets (MEMs). Also, the variation in market power indices by increasing the integration of the markets undergoing symmetric and asymmetric RES development policies is investigated. To do so, several stochastic mixed-integer non-linear programming objective functions are used in the agent-based simulation framework to model the power plants’ behavior and markets. The case study shows in the low RES penetrated markets, one can say the more integration level of the markets, the lower potential of exercising market power. The reciprocal judgment is true for a high RES penetrated market. Also, large asymmetry in RES development between markets within MEMs may bring about market power problem for a high RES penetrated market. Unlike the asymmetric RES development policies, adopting homogeneous policies in RES development within MEMs reduces the market power potential in all markets and this potential decreases with the increase in the integration of the markets.