Showing 5 results for Facts
H. Shateri, S. Jamali,
Volume 2, Issue 3 (7-2006)
Abstract
This paper presents the effects of instrument transformers connection points on
the measured impedance by distance relays in the presence of Flexible Alternating Current
Transmission System (FACTS) devices with series connected branch. Distance relay
tripping characteristic itself depends on the power system structural conditions, pre-fault
operational conditions, and especially the ground fault resistance. The structural and
controlling parameters of FACTS devices as well as the connection points of instrument
transformers affect the ideal tripping characteristic of distance relay. This paper presents a
general set of equations to evaluate the measured impedance at the relaying point for a
general model of FACTS devices to consider different affecting parameters.
M. Gitizadeh, M. Kalantar,
Volume 4, Issue 4 (12-2008)
Abstract
This paper presents a novel optimization based methodology to allocate Flexible
AC Transmission Systems (FACTS) devices in an attempt to improve the previously
mentioned researches in this field. Static voltage stability enhancement, voltage profile
improvement, line congestion alleviation, and FACTS devices investment cost reduction,
have been considered, simultaneously, as objective functions. Therefore, multi-objective
optimization without simplification has been used in this paper to find a logical solution to
the allocation problem. The optimizations are carried out on the basis of location, size and
type of FACTS devices. Thyristor Controlled Series Compensator (TCSC) and Static Var
Compensator (SVC) are utilized to achieve the determined objectives. The problem is
formulated according to Sequential Quadratic Programming (SQP) problem in the first
stage. This formulation is used to accurately evaluate static security margin with congestion
alleviation constraint incorporating voltage dependence of loads in the presence of FACTS
devices and estimated annual load profile. The best trade-off between conflicting objectives
has been obtained through Genetic Algorithm (GA) based fuzzy multi-objective
optimization approach, in the next stage. The IEEE 14-bus test system is selected to
validate the allocated devices for all load-voltage characteristics determined by the
proposed approach.
R. Ghazi, N. Pariz, R. Zeinali,
Volume 9, Issue 2 (6-2013)
Abstract
In this paper, the effect of Static VAr Compensator (SVC) parameters on the nonlinear interaction of steam power plant turbine-generator set is studied using the Modal Series (MS) method. A second order representation of a power system equipped with SVC is developed and then by MS method the nonlinear interaction of torsional modes is assessed under various conditions and the most influencing factors are determined. The results show that the stress conditions and some SVC control parameters will adversely affect the dynamic performance of a power system by increasing the nonlinear interaction of torsional modes. In this situation, the MS method can precisely provide a reliable prediction of the torsional oscillations amplitudes and the frequency content of the output system response. As the angle and speed of turbine-generator segments are used as input signals in several controllers, the frequency content of these signals are quite important in designing such controllers. This analysis is performed on a 4-areas WSCC system, which is equipped with a SVC. The obtained results can provide some important guidelines for coordinate operation and design of FACTS controllers to reduce the risk of shaft failure arising from torsional interaction in long term.
A. R. Moradi, Y. Alinejad-Beromi, K. Kiani,
Volume 13, Issue 1 (3-2017)
Abstract
Congestion and overloading for lines are the main problems in the exploitation of power grids. The consequences of these problems in deregulated systems can be mentioned as sudden jumps in prices in some parts of the power system, lead to an increase in market power and reduction of competition in it. FACTS devices are efficient, powerful and economical tools in controlling power flows through transmission lines that play a fundamental role in congestion management. However, after removing congestion, power systems due to targeting security restrictions may be managed with a lower voltage or transient stability rather than before removing. Thus, power system stability should be considered within the construction of congestion management. In this paper, a multi-objective structure is presented for congestion management that simultaneously optimizes goals such as total operating cost, voltage and transient security. In order to achieve the desired goals, locating and sizing of series FACTS devices are done with using components of nodal prices and the newly developed grey wolf optimizer (GWO) algorithm, respectively. In order to evaluate reliability of mentioned approaches, a simulation is done on the 39-bus New England network.
R. Gandotra, K. Pal,
Volume 18, Issue 3 (9-2022)
Abstract
The growing demand increases the maximum utilization of transmission and distribution lines which causes overloading, high losses, instability, contingency, and congestion. To enhance the performance of AC transmission and distribution systems FACTS devices are used. These devices assist in solving different issues of transmission lines such as instability, congestion, power flow, and power losses. Advancement in developed technology leads to the development of special application-based FACTS controllers. The main issues are concerned while placing the FACTS controller in the transmission and distribution lines to maximize the flow of power. Various methods like analytic method, arithmetic programming approaches, meta-heuristic optimization approaches, and hybrid approaches are being employed for the optimal location of FACTS controllers. This paper presents a review of various types of FACTS controllers available with both analytical and meta-heuristic optimization methods for the optimal placement of FACTS controllers. This paper also presents a review of various applications of FACTS devices such as stability improvement, power quality, and congestion management which are the main issues in smart power systems. Today’s smart power systems comprise the smart grids with smart meters and ensure continuous high quality of power to the consumers.