Search published articles


Showing 2 results for Field Oriented Control

Lesani, Darabi, Nasiri Gheidari, Tootoonchian,
Volume 2, Issue 1 (1-2006)
Abstract

In this paper, a new field oriented control scheme with maximum torque for permanent magnet hysteresis synchronous (PMHS) motor has been presented. Vector control method provides significant improvement to the dynamic performance of ac motors but in this method d- axis current is controlled such as the ratio of motor torque to motor current is a maximum, then the dynamic performance will be very fast. Furthermore, d and q axis currents are limited such as stator winding currents remain in the allowed range. Feedback method is used for the decoupling the torque-current component from the fluxcurrent component so these two components can be independently controlled. Simulation results for the motor are given and test results validate the theoretical performances.


Z. Nasiri-Gheidari, H. Lesani, F. Tootoonchian,
Volume 2, Issue 3 (7-2006)
Abstract

Hunting is a flutter associated with the synchronous speed that gives rise to the gyro drifting errors and may cause objectionable time-displacement errors in video head wheel drives and other precision scanning systems. In this paper, dynamic characteristics of permanent Magnet hysteresis motors are presented and hunting is explained. New damping techniques have been developed using optimized eigenvalues calculation. They are calculated from LQR optimization method. In this damping method, a distinct reduction in hunting has been archived. Furthermore field oriented control result of motor is presented that have good effect on Hunting. Nearest agreement between simulated and measurement results shows the accuracy of motor model. Comparison between this paper results and other measured damping methods result are shown its success.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.