Search published articles


Showing 3 results for Fuzzy Logic Control

F. Hunaini, I. Robandi, I. N. Sutantra,
Volume 11, Issue 1 (3-2015)
Abstract

Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering system using Imperialist Competitive Algorithm (ICA). The control systems are built in a cascade, FLC to suppress errors in the lateral motion and the PID control to minimize the error in the yaw motion of the vehicle. FLC is built has two inputs (error and delta error) and single output. Each input and output consists of three Membership Function (MF) in the form of a triangular for language term "zero" and two trapezoidal for language term "negative" and "positive". In order to work optimally, each MF optimized using ICA to get the position and width of the most appropriate. Likewise, in the PID control, the constant at each Proportional, Integral and Derivative control also optimized using ICA, so there are six parameters of the control system are simultaneously optimized by ICA. Simulations performed on vehicle models with 10 Degree Of Freedom (DOF), the plant input using the variables of steering that expressed in the desired trajectory, and the plant outputs are lateral and yaw motion. The simulation results showed that the FLC-PID control system optimized by using ICA can maintain the movement of vehicle according to the desired trajectory with lower error and higher speed limits than optimized with Particle Swarm Optimization (PSO).
R. Pour Ebrahim, S. Tohidi, A. Younesi,
Volume 14, Issue 1 (3-2018)
Abstract

In this paper, a new sensorless model reference adaptive method is used for direct control of active and reactive power of the doubly fed induction generator (DFIG). In order to estimate the rotor speed, a high frequency signal injection scheme is implemented. In this study, to improve the accuracy of speed estimation, two methods are suggested. First, the coefficients of proportional-integral (PI) blocks are optimized by using Krill Herd algorithm. In the second method, the fuzzy logic control method is applied in the estimator structure instead of PI controllers. The simulation results for the proposed methods illustrate that the estimated speed perfectly matches the actual speed of the DFIG. In addition, the desired slip value is achieved due to the accurate response. On the other hand, the active and reactive power responses have fast dynamics and relatively low oscillations. Moreover, the fuzzy controller shows more robustness against the variations of machine parameters.

P. O. Oluseyi, J. A. Adeagbo, D. D. Dinakin, O. M. Babatunde,
Volume 17, Issue 1 (3-2021)
Abstract

The philosophy of efficient energy consumption is vitally crucial to profitable production cost in manufacturing industries. This is because the unit production cost is largely determined by the cost of unit energy supply; which is quite higher than the cost of raw materials in Nigeria. It has been established that the Nigerian industrial sector is responsible for 8.7% of the total energy consumption in the nation. Out of this chunk, the food and beverage industry appropriates approximately 2%. Meanwhile, it is observed that the energy consumption trend in most industrial electric motors is always high due to continuous operation even during the idle time/period in production. In this study, data gathered has a coefficient of determination of 99.7%. This is, thus, subjected to regression analysis which assists in predicting the energy consumption trend for a period of one year. Further to this, the capacity of control principles in efficient energy consumption is demonstrated by practical real time implementation of a smart energy saving in the food industries using PLClogicx software. In this sense, the developed programmable logic control (PLC) ladder diagram was further designed and implemented using fuzzy logic control (FLC). This is simulated using MATLAB/Simulink toolbox. By this arrangement; it is observed that there was a significant reduction in energy consumption. This is obviously revealed in the obtained results. In this case, there was an average electrical energy savings of 65.59% in the plant’s case sealing section while an energy saving of approximately 0.13% was achieved in reference to the overall energy consumption of the industrial plant’s processes. Finally, based on the mathematical calculations obtained from observations of typical production processes in the multinational food and beverage company, the FLC is discovered to provide 99.83% efficiency in optimizing energy consumption.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.