Search published articles


Showing 2 results for Grnn

H. Yaghobi,
Volume 13, Issue 1 (3-2017)
Abstract

Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model based and are too complex. Artificial neural network (ANN) methods are robust and less model dependent for fault diagnosis when the fault signature can be directly achieved using the sampling data. In this procedure, the state of internal process will be ignored. Therefore, generalized regression neural network (GRNN) based method is presented in this paper that uses negative sequence currents (calculated from the machine's currents) as inputs to detect and locate an inter-turn fault in the stator windings of the induction motor. Turn-to-turn fault by changing the contact resistance and various numbers of shorted turns for realizing the fault severity has been modeled by Matlab/Simulink. The simulation and experimental results show that the proposed method is effective for the diagnosis of stator inter-turn fault in induction motor under the supply voltage unbalances.


S. Mirzakuchaki, Z. Paydar,
Volume 14, Issue 4 (12-2018)
Abstract

In this study a method has been introduced to map the features extracted from the recorded electromyogram signals from the forearm and the force generated by the fingers. In order to simultaneously record of sEMG signals and the force produced by fingers, 9 requested movements of fingers conducted by 10 healthy people. Estimation was done for 6 degrees of freedom (DoF) and generalized regression neural network (GRNN) was selected for system training. The optimal parameters, including the length of the time windows, the parameters of the neural network, and the characteristics of the sEMG signal were calculated to improve the performance of the estimate. The performance was obtained based on R2 criterion. The Total value of R2 for 6 DoF was 92.8±5.2% that obtained by greedy looking system parameters in all the subjects. The result shows that proposed method can be significant in simultaneous myoelectric control.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.