Search published articles


Showing 20 results for Genetic Algorithm

F. Hojjat Kashani, A. A. Lotfi Neyestanak, K. Barkeshli,
Volume 1, Issue 2 (4-2005)
Abstract

A modified circular patch antenna design has been proposed in this paper, the bandwidth of this antenna is optimized using the genetic algorithm (GA) based on fuzzy decision-making. This design is simulated with HP HFSS Program that based on finite element method. This method is employed for analysis at the frequency band of 1.4 GHz- 2.6 GHz. It gives good impedance bandwidth of the order of 15.5% at the frequency band of 1.67GHz- 1.95GHz and 10.6% at 2.23GHz- 2.48GHz. It means that impedance bandwidth increases above 4.9% than the impedance bandwidth of ordinary circular patch antennas and band width rise from 1.78GHz- 1.98GHz (10.6%) to 1.67GHz- 1.95GHz (15.5%) and 2.23GHz- 2.48GHz (10.6%). The antenna fabricated with two slots on circular patch antenna. The measured results of the optimized antenna validate a high compatibility between the simulation and the measurements.
S. H. Zahiri, H. Rajabi Mashhadi, S. A. Seyedin,
Volume 1, Issue 3 (7-2005)
Abstract

The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experimentally that the proposed IRGA-classifier has removed two important weak points of the conventional GA-classifiers. These problems are the large number of training points and the large number of iterations to achieve a comparable performance with the Bayes classifier, which is an optimal conventional classifier. Three examples have been chosen to compare the performance of designed IRGA-classifier to conventional GA-classifier and Bayes classifier. They are the Iris data classification, the Wine data classification, and radar targets classification from backscattered signals. The results show clearly a considerable improvement for the performance of IRGA-classifier compared with a conventional GA-classifier.
M. Gitizadeh, M. Kalantar,
Volume 4, Issue 4 (12-2008)
Abstract

This paper presents a novel optimization based methodology to allocate Flexible AC Transmission Systems (FACTS) devices in an attempt to improve the previously mentioned researches in this field. Static voltage stability enhancement, voltage profile improvement, line congestion alleviation, and FACTS devices investment cost reduction, have been considered, simultaneously, as objective functions. Therefore, multi-objective optimization without simplification has been used in this paper to find a logical solution to the allocation problem. The optimizations are carried out on the basis of location, size and type of FACTS devices. Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC) are utilized to achieve the determined objectives. The problem is formulated according to Sequential Quadratic Programming (SQP) problem in the first stage. This formulation is used to accurately evaluate static security margin with congestion alleviation constraint incorporating voltage dependence of loads in the presence of FACTS devices and estimated annual load profile. The best trade-off between conflicting objectives has been obtained through Genetic Algorithm (GA) based fuzzy multi-objective optimization approach, in the next stage. The IEEE 14-bus test system is selected to validate the allocated devices for all load-voltage characteristics determined by the proposed approach.
H. Miar- Naimi, M. Zabihi,
Volume 5, Issue 4 (12-2009)
Abstract

Abstract— This paper presents a novel approach to obtain fast locking PLL by embedding a nonlinear element in the loop of PLL. The nonlinear element has a general parametric Taylor expansion. Using genetic algorithm (GA) we try to optimize the nonlinear element parameters. Embedding optimized nonlinear element in the loop shows enhancements in speed and stability of PLL. To evaluate the performance of the proposed structure, various tests performed and results compared with standard phase locked loop. The tests and results show the superior performance of the proposed PLL.
Sh. Yousefi, M. Parsa Moghaddam, V. Johari Majd,
Volume 7, Issue 3 (9-2011)
Abstract

In this paper, an agent-based structure of the electricity retail market is presented based on which day-ahead (DA) energy procurement for customers is modeled. Here, we focus on operation of only one Retail Energy Provider (REP) agent who purchases energy from DA pool-based wholesale market and offers DA real time tariffs to a group of its customers. As a model of customer response to the offered real time prices, an hourly acceptance function is proposed in order to represent the hourly changes in the customer’s effective demand according to the prices. Here, Q-learning (QL) approach is applied in day-ahead real time pricing for the customers enabling the REP agent to discover which price yields the most benefit through a trial-and-error search. Numerical studies are presented based on New England day-ahead market data which include comparing the results of RTP based on QL approach with that of genetic-based pricing.
L. Ghods, M. Kalantar,
Volume 7, Issue 4 (12-2011)
Abstract

Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-cost plan. In general, resource planning is performed subject to numerous uncertainties. Expert opinion indicates that a major source of uncertainty in planning for future capacity resource needs and operation of existing generation resources is the forecasted load demand. This paper presents an overview of the past and current practice in long- term demand forecasting. It introduces methods, which consists of some traditional methods, neural networks, genetic algorithms, fuzzy rules, support vector machines, wavelet networks and expert systems.
M. Barati, A. R. Khoogar, M. Nasirian,
Volume 7, Issue 4 (12-2011)
Abstract

Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy to use algorithm is introduced for correction and calibration of robot kinematics parameters. Actually at several end-effecter positions, the joint variables are measured simultaneously. This information is then used in two different algorithms least square (LS) and Genetic algorithm (GA) for automatic calibration and correction of the kinematics parameters. This process was also tested experimentally via a three degree of freedom manipulator which is actually used as a coordinate measuring machine (CMM). The experimental Results prove that the Genetic algorithms are better for both parameter identification and calibration of link parameters.
Sh. Gorgizadeh, A. Akbari Foroud, M. Amirahmadi,
Volume 8, Issue 2 (6-2012)
Abstract

This paper proposes a method for determining the price bidding strategies of market participants consisting of Generation Companies (GENCOs) and Distribution Companies (DISCOs) in a day-ahead electricity market, while taking into consideration the load forecast uncertainty and demand response programs. The proposed algorithm tries to find a Pareto optimal point for a risk neutral participant in the market. Because of the complexity of the problem a stochastic method is used. In the proposed method, two approaches are used simultaneously. First approach is Fuzzy Genetic Algorithm for finding the best bidding strategies of market players, and another one is Mont-Carlo Method that models the uncertainty of load in price determining algorithm. It is demonstrated that with considering transmission flow constraints in the problem, load uncertainty can considerably influences the profits of companies and so using the second part of the proposed algorithm will be useful in such situation. It is also illustrated when there are no transmission flow constraints, the effect of load uncertainty can be modeled without using a stochastic model. The algorithm is finally tested on an 8 bus system.
A. Ebadi, M. Mirzaie, S. A. Gholamian,
Volume 8, Issue 2 (6-2012)
Abstract

Induction motor is the most popular load in the industry, it is very important to study about the effects of voltage quality on induction motor performance. One of the most important voltage quality problems in power system is voltage unbalance. This paper evaluates and compares two methods including finite element method (FEM) and equivalent electrical circuit simulation for investigation of the effects of voltage unbalance conditions on the performance of a three- phase induction motor. For this purpose, a threephase squirrel cage induction motor is simulated using Finite Element Method and equivalent electrical circuit parameters of the FEM model is estimated by genetic algorithm. Then, some unbalanced voltages are applied on the FEM model of the Motor and the resulted power and losses are compared with calculated values using equivalent electrical circuit simulation in same voltage conditions.
M. Soleimanpour-Moghadam, S. Talebi,
Volume 9, Issue 2 (6-2013)
Abstract

This paper devotes itself to the study of secret message delivery using cover image and introduces a novel steganographic technique based on genetic algorithm to find a near-optimum structure for the pair-wise least-significant-bit (LSB) matching scheme. A survey of the related literatures shows that the LSB matching method developed by Mielikainen, employs a binary function to reduce the number of changes of LSB values. This method verifiably reduces the probability of detection and also improves the visual quality of stego images. So, our proposal draws on the Mielikainen's technique to present an enhanced dual-state scoring model, structured upon genetic algorithm which assesses the performance of different orders for LSB matching and searches for a near-optimum solution among all the permutation orders. Experimental results confirm superiority of the new approach compared to the Mielikainen’s pair-wise LSB matching scheme.
R Subramanian, K Thanushkodi, A Prakash,
Volume 9, Issue 4 (12-2013)
Abstract

The Economic Load Dispatch (ELD) problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA), for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to limits on generator true power output and transmission losses. The MFA is a stochastic, Meta heuristic approach based on the idealized behaviour of the flashing characteristics of fireflies. This paper presents an application of MFA to ELD for six generator test case system. MFA is applied to ELD problem and compared its solution quality and computation efficiency to Genetic algorithm (GA), Differential Evolution (DE), Particle swarm optimization (PSO), Artificial Bee Colony optimization (ABC), Biogeography-Based Optimization (BBO), Bacterial Foraging optimization (BFO), Firefly Algorithm (FA) techniques. The simulation result shows that the proposed algorithm outperforms previous optimization methods.
M H Refan, A Dameshghi, M Kamarzarrin,
Volume 9, Issue 4 (12-2013)
Abstract

Differential base station sometimes is not capable of sending correction information for minutes, due to radio interference or loss of signals. To overcome the degradation caused by the loss of Differential Global Positioning System (DGPS) Pseudo-Range Correction (PRC), predictions of PRC is possible. In this paper, the Support Vector Machine (SVM) and Genetic Algorithms (GAs) will be incorporated for predicting DGPS PRC information. The Genetic Algorithm is employed to feature subset selection. Online training for real-time prediction of the PRC enhances the continuity of service on the differential correction signals and therefore improves the positioning accuracy in Real Time DGPS. Given a set of data received from low cost GPS module, the GASVM can predict the PRC precisely when the PRC signal is lost for a short period of time. This method which is introduced for the first time for prediction of PRC is compared to other recently published methods. The experiments show that the total RMS prediction error of GASVM is less than 0.06m for on step and 0.16m for 10 second ahead cases
F. Farabi, M. R. Mosavi, S. Karami,
Volume 11, Issue 2 (6-2015)
Abstract

Impressive development of computer networks has been required precise evaluation of efficiency of these networks for users and especially internet service providers. Considering the extent of these networks, there has been numerous factors affecting their performance and thoroughly investigation of these networks needs evaluation of the effective parameters by using suitable tools. There are several tools to measure network's performance which evaluate and analyze the parameters affecting the performance of the network. D-ITG traffic generator and measuring tool is one of the efficient tools in this field with significant advantages over other tools. One of D-ITG drawbacks is the need to determine input parameters by user in which the procedure of determining the input variables would have an important role on the results. So, introducing an automatic method to determine the input parameters considering the characteristics of the network to be tested would be a great improvement in the application of this tool. In this paper, an efficient method has been proposed to determine optimal input variables applying evolutionary algorithms. Then, automatic D-ITG tool operation would be studied. The results indicate that these algorithms effectively determine the optimal input variables which significantly improve the D-ITG application.

AWT IMAGE


A. A. Khodadoost Arani, J. S. Moghani, A. Khoshsaadat, G. B. Gharehpetian,
Volume 12, Issue 2 (6-2016)
Abstract

Multilevel voltage source inverters have several advantages compare to traditional voltage source inverter. These inverters reduce cost, get better voltage waveform and decrease Total Harmonic Distortion (THD) by increasing the levels of output voltage. In this paper Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods are used to find the switching angles for achieving to the minimum THD for output voltage waveform of the Cascaded H-bridge Multi-Level Inverters (MLI). These methods are used for a 27-level inverter for different modulation indices. Result of two methods is identical and in comparison to other methods have the smallest THD. To verify results of two mentioned methods, a simulation using MATLAB/Simulink software is presented.


A. S. Hoshyarzadeh, B. Zaker, A. A. Khodadoost Arani, G. B. Gharehpetian,
Volume 14, Issue 3 (9-2018)
Abstract

Recently, smart grids have been considered as one of the vital elements in upgrading current power systems to a system with more reliability and efficiency. Distributed generation is necessary for most of these new networks. Indeed, in all cases that DGs are used in distribution systems, protection coordination failures may occur in multiple configurations of smart grids using DGs. In different configurations, there are various fault currents that can lead to protection failure. In this study, an optimal DG locating and Thyristor-Controlled Impedance (TCI) sizing of resistive, inductive, and capacitive type is proposed for distribution systems to prevent considerable changes in fault currents due to different modes of the smart grid. This problem is nonlinear constrained programming (NLP) and the genetic algorithm is utilized for the optimization. This optimization is applied to the IEEE 33-bus and IEEE 69-bus standard distribution systems. Optimum DG location and TCI sizing has carried out in steady fault currents in the grid-connected mode of these practical networks. Simulation results verify that the proposed method is effective for minimizing the protection coordination failure in such distribution networks.

H. Kiani Rad, Z. Moravej,
Volume 15, Issue 3 (9-2019)
Abstract

In this paper, a new method is conducted for incorporating the forecasted load uncertainty into the Substation Expansion Planning (SEP) problem. This method is based on the fuzzy clustering, where the location and value of each forecasted load center is modeled by employing the probability density function according to the percentage of uncertainty. After discretization of these functions, the location and value of each of the new load centers are determined based on the presented fuzzy clustering based algorithm. A Genetic Algorithm (GA) is used to solve the presented optimization problem in which the allocations and capacities of new substations as well as the expansion requirements for the existing ones are determined. With the innovative presented method, the impact of uncertainty of the power and location of the predicted loads on the results of SEP is measured, and finally, it is possible to make a proper decision for the SEP. The significant features of this method can be outlined as its applicability to large-scale networks, robustness to load changes, the comprehensiveness and also, the simplicity of applying this method to various problems. The effectiveness of proposed method is demonstrated by application on a real sub-transmission system.

A. N. Patel, B. N. Suthar,
Volume 16, Issue 3 (9-2020)
Abstract

Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined based on vehicular dynamics and application needs. Double rotor sandwiched stator axial flux PMBLDC motor is designed considering various assumed design variables. Initially designed axial flux PMBLDC motor is considered as a reference motor for further analysis. Optimization of the specific power of electric motor for electric vehicle applications is a very important design issue. The Genetic Algorithm (GA) based optimization technique is proposed for optimization of specific power of axial flux permanent magnet brushless DC motor. Optimization with an objective of maximum specific power with the same torque rating is performed. Three-dimensional finite element analysis is performed to validate the proposed GA based specific power optimization. Close agreement between results obtained from finite element analysis and analytical design establishes the correctness of the proposed optimization technique. The performance of the improved motor is compared with the initially designed reference motor. It is analyzed that the specific power of axial flux PMBLDC motor is enhanced effectively with the application of GA based design optimization technique.

R. Havangi,
Volume 16, Issue 4 (12-2020)
Abstract

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome these problems. The proposed method uses an adaptive unscented Kalman filter (AUKF) filter to generate the proposal distribution, in which the covariance of the measurement and process of the state are online adjusted by predicted residual as an adaptive factor based on a covariance matching technique. In addition, it uses the genetic operators based strategy to further improve the particle diversity. The results show the effectiveness of the proposed approach.

F. Askari, A. Khoshkholgh,
Volume 17, Issue 2 (6-2021)
Abstract

The battery of electric vehicles (EV) can be charged from the power grid or discharged back to it. Parking lots can aggregate hundreds of EVs which makes them a significant and flexible load/generation component in the grid. In a smart grid environment, the smart parking lot (SPL) can benefit from the situation of the simultaneous connection to the EVs and power grid. This paper proposes a new algorithm to maximize SPL profit from participation in the forward and spot markets. Monte-Carlo simulation is used to determine the participation of the SPL in the forward market. Then an economic model is proposed to optimize the charging or discharging time table of EVs at any hours of a day and SPL participation in the spot market in a way that maximum SPL profit and satisfaction of EV owners can be gained. The Genetic Algorithm (GA) is used to solve this optimization problem.

K. Fertas, F. Fertas, S. Tebache, A. Mansoul, R. Aksas,
Volume 18, Issue 3 (9-2022)
Abstract

In this paper, a frequency switchable antenna design using genetic algorithms (GAs) for dual band WiMAX (3.5GHz) and WLAN (5.2GHz) applications is proposed. The area of the radiating patch element is divided into 2 mm square cells, with each cell assigned a conducting or non-conducting characteristic. To realize frequency reconfiguration, switches are incorporated into appropriate locations to activate/deactivate corresponding cells. The on/off states of the switches are represented by the presence or absence of conductor, respectively. Hence, the proposed approach allows the antenna to operate as mono-band or dual-band radiator according to the desired application. Further, measurements and simulations are carried out and a reasonable agreement is achieved.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.