Showing 5 results for Harmonics
A. Damaki Aliabad, M. Mirsalim, M. Fazli Aghdaei,
Volume 6, Issue 1 (3-2010)
Abstract
The air-gap of electrical machines may become non-uniform due to low accuracy of the manufacturing machinery, in assembling processes, or by aging. Detection and monitoring of this phenomenon is very important and of interest. There are several methods to model non-uniform air-gaps and to detect them by monitoring systems. One of the most widely used methods is by the analysis of the line currents. In this paper a new, simple and comprehensive method is presented to model and detect non-uniform air-gaps in synchronous generators with skewed rotors. The influence of non-uniform air-gaps on the harmonics of the induced voltage of the stator is investigated by the proposed method. Simulations are performed for three cases: uniform air-gap, static rotor eccentricity, and stator ovality in a two phase generator. The experimental results are also presented. The good correspondence between the simulation and the experimental results clearly validates the theoretical findings put forward in this paper.
M. Khodsuz, S. Seyyedbarzegar,
Volume 15, Issue 1 (3-2019)
Abstract
The essential role of surge arresters is equipment protection against over-voltages to increase system reliability. Different monitoring techniques have been used to diagnose surge arrester condition. Leakage current analysis methods by the extraction resistive and capacitive components of leakage current are a conventional method for surge arrester monitoring. Insufficient appropriate thresholds are most important restriction of these kinds of methods. In this paper, the impact of pollution, ultraviolet aging and varistors fault on harmonic spectrum of leakage current have been evaluated experimentally. Real tests and examinations have been done on different metal oxide surge arresters to investigate effects of mentioned factors on leakage current harmonics. To show results performance, bees-adaptive network based fuzzy inference system has been applied.
R. Shariatinasab, M. Rasuli, J. Gholinezhad,
Volume 15, Issue 1 (3-2019)
Abstract
In this paper a novel method based on evolutionary algorithms is presented to estimate the harmonic components. In general, the optimization of the harmonic estimation process is a multi-component problem, in which evaluation of the phase and harmonic frequency is the nonlinear part of the problem and is solved based on the mathematical and evolutionary methods; while estimation of amplitude of the harmonic component is a linear issue that is performed by combining the least squares method with the aforementioned approaches. In this paper, firstly, the optimal estimation of integer harmonic components has been introduced based on the improved shuffled frog leaping algorithm (ISFLA) in the presence of two types of noise. The obtained results present the lower error of the proposed method than to IGHS, FBF PSO, GA and FFT methods. Thereafter, the effectiveness of the presented algorithm in optimal estimation of frequency, phase, and amplitude of the integer and non-integer harmonics are investigated. The optimization of the estimation of various harmonic components under different conditions using ISFLA leads to an improvement in the assessment of power quality in power systems especially in the distribution networks, considering a lot of the nonlinear loads and harmonic resources connected to the network.
Hassan Alizadeh Shyrayeh, Iraj Ahmadi, Mohammad Mirzaie, Masoud Ahmadi Gorji,
Volume 18, Issue 4 (12-2022)
Abstract
The progressive application of non-linear loads in distribution systems (DS) increases current harmonics flow in DS's apparatuses, especially distribution transformers (DTs). Since DTs' operating temperature rises due to the harmonics flow, their loading should be reduced such that the hot spot temperature (HST) is preserved under its permissible value. This means that DTs' available capacity is influenced by load harmonic content. In this paper, a novel formulation for DTs' failure rate in the presence of harmonics is presented as a function of load harmonic contents. Using the suggested equivalent failure rate, DTs' available capacity in harmonic polluted DS is mathematically formulated. Additionally, the presence of the harmonic increases the HST, leading to DTs' aging acceleration. Therefore, the impact of harmonic components on DTs' aging is arithmetically modeled. To evaluate the efficacy of the suggested reliability model, it is applied to three distinct DTs having respectively industrial, commercial, and residential loads. The obtained results indicate that the available capacity of DTs with the same rated capacity would be different regarding to their load harmonic contents. On the other hand, it is comprehended from the achieved results that the aging acceleration factor (Faa) of the DTs increases owing to their load harmonic contents.
Ali Riyadh Ali , Rakan Khalil Antar, Abdulghani Abdulrazzaq Abdulghafoor ,
Volume 20, Issue 3 (9-2024)
Abstract
Artificial intelligence-based optimization algorithm was used to compute the switching angle values. In order to run the inverter with the lowest possible Total Harmonic Distortion (THD) value, it is suggested in this study to use an algorithm such as the Practical Swarm Algorithm (PSA). The multilevel inverter and optimization algorithm were created and simulated in this study using a MATLAB software. A frequency spectrum analysis was also conducted and found to be consistent with the theoretical analysis of the system. To provide practical results, the FPGA generates PWM signals that are appropriate for the inverter switches. On the Spartan-3E Starter set, the suggested control schemes were developed and put it into practice. Xilinx-ISE 12.1i design software and VHDL hardware description language were used to create the FPGA software. The suggested approaches have a number of benefits over conventional digital PWM techniques, including straightforward hardware implementation, minimum scaling of digital circuits, easy digital design, reconfigurable, and flexibility in adaptability. The outcomes of the experiment and the simulation agreed rather well.