Search published articles


Showing 2 results for Heuristic Methods

M. Padma Lalitha, V.c Veera Reddy, N. Sivarami Reddy,
Volume 6, Issue 4 (12-2010)
Abstract

Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss, etc. This paper presents a new methodology using Fuzzy and Artificial Bee Colony algorithm(ABC) for the placement of Distributed Generators(DG) in the radial distribution systems to reduce the real power losses and to improve the voltage profile. A two-stage methodology is used for the optimal DG placement . In the first stage, Fuzzy is used to find the optimal DG locations and in the second stage, ABC algorithm is used to find the size of the DGs corresponding to maximum loss reduction. The ABC algorithm is a new population based meta heuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The proposed method is tested on standard IEEE 33 bus test system and the results are presented and compared with different approaches available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.
M. Nezhadshahbodaghi, K. Bahmani, M. R. Mosavi, D. Martín,
Volume 19, Issue 2 (6-2023)
Abstract

Today, it can be said that in every field in which timely information is needed, we can use the applications of time-series prediction. In this paper, among so many chaotic systems, the Mackey-Glass and Loranz are chosen. To predict them, Multi-Layer Perceptron Neural Network (MLP NN) trained by a variety of heuristic methods are utilized such as genetic, particle swarm, ant colony, evolutionary strategy algorithms, and population-based incremental learning. Also, in addition to expressed methods, we propose two algorithms of Bio-geography-Based Optimization (BBO) and fuzzy system to predict these chaotic systems. Simulation results show that if the MLP NN is trained based on the proposed meta-heuristic algorithm of BBO, training and testing accuracy will be improved by 28.5% and 51%, respectively. Also, if the presented fuzzy system is utilized to predict the chaotic systems, it outperforms approximately by 98.5% and 91.3% in training and testing accuracy, respectively.

 


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.