K. Malekian, J. Milimonfared, B. Majidi,
Volume 5, Issue 1 (3-2009)
Abstract
The main theme of this paper is to present novel controller, which is a genetic
based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with
direct torque control. A radial basis function network has been used for online tuning of the
genetic based fuzzy logic controller. Initially different operating conditions are obtained
based on motor dynamics incorporating uncertainties. At each operating condition, a
genetic algorithm is used to optimize fuzzy logic parameters in closed-loop direct torque
control scheme. In other words, the genetic algorithm finds optimum input and output
scaling factors and optimum number of membership functions. This optimization procedure
is utilized to obtain the minimum speed deviation, minimum settling time, zero steady-state
error. The control scheme has been verified by simulation tests with a prototype interior
permanent magnet synchronous motor.
S. Ahmadi, A. Vahedi,
Volume 11, Issue 3 (9-2015)
Abstract
In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM) for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of traction motor are related to each other. By considering the same output power, steady state speed, rated voltage, rated current and different acceleration time for a specified train, multiobjective optimal design has been performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and finite element method (FEM) has been chosen as an analysis tool. BFGS method is one of Quasi Newton methods and is counted in classic approaches. Classic optimization methods are appropriate when FEM is applied as an analysis tool and objective function isn’t expressed in closed form in terms of optimization variables.
F. Mahmouditabar, A. Vahedi, P. Ojaghlu,
Volume 14, Issue 1 (3-2018)
Abstract
Permanent magnet motors have been considered for a variety of applications due to their features such as high power density and high efficiency. One of the issues that should be investigated in the design of these motors is the demagnetization problem. Usually, the demagnetization analysis is carried out in a steady state, while demagnetization effect in dynamic condition is more considerable due to pulse shaped of armature field. Based on this fact, in this paper, dynamic demagnetization is investigated for an IPM V‑shaped magnet. This study has been done for two types of magnet, each one in static & dynamic conditions and the results are compared. Moreover, the effect of flux weakening regime on demagnetization is investigated.