Showing 4 results for Least Square
M. Barati, A. R. Khoogar, M. Nasirian,
Volume 7, Issue 4 (12-2011)
Abstract
Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy to use algorithm is introduced for correction and calibration of robot kinematics parameters. Actually at several end-effecter positions, the joint variables are measured simultaneously. This information is then used in two different algorithms least square (LS) and Genetic algorithm (GA) for automatic calibration and correction of the kinematics parameters. This process was also tested experimentally via a three degree of freedom manipulator which is actually used as a coordinate measuring machine (CMM). The experimental Results prove that the Genetic algorithms are better for both parameter identification and calibration of link parameters.
M. R. Mosavi, S. Azarshahi, I. Emamgholipour , A. A. Abedi,
Volume 10, Issue 1 (3-2014)
Abstract
In present study, using Least Squares (LS) method, we determine the position smoothing in GPS single-frequency receiver by means of pseudo-range and carrier phase measurements. The application of pseudo-range or carrier phase measurements in GPS receiver positioning separately can lead to defects. By means of pseudo-range data, we have position with less precision and more distortion. By use of carrier phase data, we do not have absolute position and just dislocation is available, but the accuracy is high. In present research, we have combined pseudo-range and carrier phase data using LS method in order to determine GPS receiver's position smoothing. The results of comparison by LS method show less RMS error, less calculation volume and more smoother in using carrier phase-pseudo-range data together relative to pseudo-range data in isolation.
M. Evazi, M. Shahsavan, M. Heidari, A. Razminia,
Volume 14, Issue 4 (12-2018)
Abstract
This paper addresses a new method for decreasing error in secure chaotic communication which utilizes an adaptive law in demodulator part. The basic tools in this process are the Total Least Square as the fundamental technique in demodulating section and a chaotic signal as the carrier one which impose some complexities on the overall system. This algorithm may be used in digital filter for estimating parameters with lower error. Using this approach an improvement can be achieved in estimating the desired signal in comparison with two famous methods, namely, ordinary Least Mean Square (LMS) and Constrained-Stability LMS (CS-LMS). An illustrative example has been used to verify the presented technique through numerical simulation.
M. Ajoudani, A. Sheikholeslami, A. Zakariazadeh,
Volume 16, Issue 4 (12-2020)
Abstract
The development of communications and telecommunications infrastructure, followed by the extension of a new generation of smart distribution grids, has brought real-time control of distribution systems to electrical industry professionals’ attention. Also, the increasing use of distributed generation (DG) resources and the need for participation in the system voltage control, which is possible only with central control of the distribution system, has increased the importance of the real-time operation of distribution systems. In real-time operation of a power system, what is important is that since the grid information is limited, the overall grid status such as the voltage phasor in the buses, current in branches, the values of loads, etc. are specified to the grid operators. This can occur with an active distribution system state estimation (ADSSE) method. The conventional method in the state estimation of an active distribution system is the weighted least squares (WLS) method. This paper presents a new method to modify the error modeling in the WLS method and improve the accuracy SVs estimations by including load variations (LVs) during measurement intervals, transmission time of data to the information collection center, and calculation time of the state variables (SVs), as well as by adjusting the variance in the smart meters (SM). The proposed method is tested on an IEEE 34-bus standard distribution system, and the results are compared with the conventional method. The simulation results reveal that the proposed approach is robust and reduces the estimation error, thereby improving ADSSE accuracy compared with the conventional methods.