Pardis Asghari, Alireza Zakariazadeh,
Volume 19, Issue 4 (12-2023)
Abstract
This paper proposes a novel approach to analyzing and managing electricity consumption using a clustering algorithm and a high-accuracy classifier for smart meter data. The proposed method utilizes a multilayer perceptron neural network classifier optimized by an Imperialist Competitive Algorithm (ICA) called ICA-optimized MLP, and a CD Index based on Fuzzy c-means to optimally determine representative load curves. A case study involving a real dataset of residential smart meters is conducted to validate the effectiveness of the proposed method, and the results demonstrate that the ICA-optimized MLP method achieves an accuracy of 98.62%, outperforming other classification methods. This approach has the potential to improve energy efficiency and reduce costs in the power system, making it a promising solution for analyzing and managing electricity consumption.