Showing 7 results for Machine Learning
M. Dodangeh, N. Ghaffarzadeh,
Volume 18, Issue 4 (12-2022)
Abstract
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. The results of the currents and voltages norms are applied as features for a topology data analysis algorithm for fault type classifying in the AC microgrid for fault location purposes. The Algorithm was tested on a microgrid that operates with precision equal to 100% in fault classification and a mean error lower than 20 m when forecasting the fault location. The proposed method robustly operates in sampling frequency, fault resistance variation, and noisy and high impedance fault conditions.
Mohammad Hasheminejad,
Volume 19, Issue 4 (12-2023)
Abstract
The Nonparametric Speech Kernel (NSK), a nonparametric kernel technique, is presented in this study as a novel way to improve Speech Emotion Recognition (SER). The method aims to effectively reduce the size of speech features to improve recognition accuracy. The proposed approach addresses the need for efficient and compact low-dimensional features for speech emotion recognition. Having acknowledged the intrinsic distinctions between speech and picture data, we have refined the Kernel Nonparametric Weighted Feature Extraction (KNWFE) formulation to suggest NSK, which is especially intended for speech emotion identification. The output of NSK can be used as input features for deep learning models such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), or hybrid architectures. In deep learning, NSK can also be used as a kernel function for kernel-based methods such as kernelized support vector machines (SVM) or kernelized neural networks. Our tests demonstrate that NSK outperforms current techniques, outperforming the best-tested approach by 5.02% and 3.05%, respectively, with an average accuracy of 96.568% for the Persian speech emotion dataset and 82.56% for the Berlin speech emotion dataset.
Reza Bayat Rizi, Amir R. Forouzan, Farshad Miramirkhani, Mohamad F. Sabahi,
Volume 20, Issue 0 (12-2024)
Abstract
Visible Light Communication, a key optical wireless technology, offers reliable, high-bandwidth, and secure communication, making it a promising soloution for a variety of applications. Despite its many advantages, optical wireless communication faces challenges in medical environments due to fluctuating signal strength caused by patient movement. Smart transmitter structures can improve system performance by adjusting system parameters to the fluctuating channel conditions. The purpose of this research is to examine how adaptive modulation performs in a medical body sensor network system that uses visible light communication. The analysis focuses on various medical situations and investigates machine learning algorithms. The study compares adaptive modulation based on supervised learning with that based on reinforcement learning. The findings indicate that both approaches greatly improve spectral efficiency, emphasizing the significance of implementing link adaptation in visible light communication-based medical body sensor networks. The use of the Q-learning algorithm in adaptive modulation enables real-time training and enables the system to adjust to the changing environment without any prior knowledge about the environment. A remarkable improvement is observed for photodetectors on the shoulder and wrist since they experience more DC gain.
Biswapriyo Sen, Maharishi Kashyap, Jitendra Singh Tamang, Sital Sharma, Rijhi Dey,
Volume 20, Issue 2 (6-2024)
Abstract
Cardiovascular arrhythmia is indeed one of the most prevalent cardiac issues globally. In this paper, the primary objective was to develop and evaluate an automated classification system. This system utilizes a comprehensive database of electro- cardiogram (ECG) data, with a particular focus on improving the detection of minority arrhythmia classes.
In this study, the focus was on investigating the performance of three different supervised machine learning models in the context of arrhythmia detection. These models included Support Vector Machine (SVM), Logistic Regression (LR) and Random Forest (RF). An analysis was conducted using real inter-patient electrocardiogram (ECG) records, which is a more realistic scenario in a clinical environment where ECG data comes from various patients.
The study evaluated the models’ performances based on four important metrics: accuracy, precision, recall, and f1-score. After thorough experimentation, the results highlighted that the Random Forest (RF) classifier outperformed the other methods in all of the metrics used in the experiments. This classifier achieved an impressive accuracy of 0.94, indicating its effectiveness in accurately detecting arrhythmia in diverse ECG signals collected from different patients.
Eisa Zarepour, Mohammad Reza Mohammadi, Morteza Zakeri-Nasrabadi, Sara Aein, Razieh Sangsari, Leila Taheri, Mojtaba Akbari, Ali Zabihallahpour,
Volume 20, Issue 3 (9-2024)
Abstract
Using mobile phones for medical applications are proliferating due to high-quality embedded sensors. Jaundice, a yellow discoloration of the skin caused by excess bilirubin, is a prevalent physiological problem in newborns. While moderate amounts of bilirubin are safe in healthy newborns, extreme levels are fatal and cause devastating and irreversible brain damage. Accurate tests to measure jaundice require a blood draw or dedicated clinical devices facing difficulty where clinical technology is unavailable. This paper presents a smartphone-based screening tool to detect neonatal hyperbilirubinemia caused by the high bilirubin production rate. A machine learning regression model is trained on a pretty large dataset of images, including 446 samples, taken from newborns' sternum skin in four medical centers in Iran. The learned model is then used to estimate the level of bilirubin. Experimental results show a mean absolute error of 1.807 mg/dl and a correlation of 0.701 between predicted bilirubin by the proposed method and the TSB values as ground truth.
Sandra D’souza, Niranjan Reddy S, Saikonda Krishna Tarun, Sohan P, Aneesha Acharya K,
Volume 20, Issue 4 (11-2024)
Abstract
The incidence of heart-related illnesses is on the rise worldwide. Heart diseases are primarily caused by a multitude of parameters, including high blood pressure, diabetes, and excessive cholesterol, which are controlled by poor dietary and lifestyle choices. The growth in cardiovascular diseases (CVD) is mostly due to several other behaviors, such as smoking, drinking, and sleeplessness. In the research, machine learning-based prediction methods work on the audio recordings of heartbeats known as phonocardiograms (PCG) to develop an algorithm that differentiates a normal healthy heart from an abnormal heart based on the heart sounds. The data set consists of 831 normal and 260 abnormal data, and the duration of each sample is 5 seconds. Features extracted from the data are up-sampled and applied to the logistic regression and random forest classification models. The developed models record a classification accuracy of 71% for logistic regression and 94% for the random forest model. Further, artificial neural networks (ANN) and Deep learning networks have been trained to improve performance and demonstrated an accuracy of 94.5%.
Elahe Moradi,
Volume 20, Issue 4 (11-2024)
Abstract
With the intricate interplay between clinical and pathological data in coronary heart disease (CHD) diagnosis, there is a growing interest among researchers and healthcare providers in developing more accurate and reliable predictive methods. In this paper, we propose a new method entitled the robust artificial neural network classifier (RANNC) technique for the prediction of CHD. The dataset CHD in this paper has imbalanced data, and in addition, it has some outlier values. The dataset consists of information related to 4240 samples with 16 attributes. Due to the presence of outliers, a robust method has been used to scale the dataset. On the other hand, due to the imbalance of CHD data, three data balancing methods, including Random Over Sampling (ROS), Synthetic Minority Over Sampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN) approaches, have been applied to the CHD data set. Also, six artificial intelligence algorithms, including LRC, DTC, RFC, KNNC, SVC, and ANN, have been evaluated on the considered dataset with criteria such as precision, accuracy, recall, F1-score, and MCC. The RANNC, leveraging ADASYN to address data imbalance and outliers, significantly improved CHD diagnostic accuracy and the reliability of healthcare predictive models. It outperformed other artificial intelligence methods, achieving precision, accuracy, recall, F1-score, and MCC scores of 95.57%, 96.90%, 99.70%, 97.59%, and 93.42%, respectively.