Search published articles


Showing 2 results for Maximum Torque Per Ampere

K. Malekian, J. Milimonfared, B. Majidi,
Volume 5, Issue 1 (3-2009)
Abstract

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating uncertainties. At each operating condition, a genetic algorithm is used to optimize fuzzy logic parameters in closed-loop direct torque control scheme. In other words, the genetic algorithm finds optimum input and output scaling factors and optimum number of membership functions. This optimization procedure is utilized to obtain the minimum speed deviation, minimum settling time, zero steady-state error. The control scheme has been verified by simulation tests with a prototype interior permanent magnet synchronous motor.
J. Soleimani, A. Vahedi, S. M Mirimani,
Volume 7, Issue 4 (12-2011)
Abstract

Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum value of cogging torque for traction IPM synchronous machines and simulation in order to extract the output values of motor is done using 3D-Finite Element Model, that has high level of accuracy and gives us a better insight of motor performance. Then presents back EMF, power factor, cogging torque, Flux density, torque per ampere diagram, CPSR (constant power speed ratio), torque per speed diagram in this IPM synchronous machine. This study can help designers in design approach of such motors.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.