Search published articles


Showing 1 results for Mean Square Deviation

M. Shams Esfand Abadi, H. Mesgarani, S. M. Khademiyan,
Volume 13, Issue 3 (9-2017)
Abstract

The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subfilter changes according to the largest decrease in mean square deviation. The simulation results show that the proposed VSS-WTDLMS has faster convergence rate and lower misadjustment than ordinary WTDLMS.



Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.