Showing 4 results for Partial Discharge
V. Abbasi,
Volume 14, Issue 3 (9-2018)
Abstract
Cable termination faults are problematic in electrical networks almost always. Technology has solved problems somewhat, but there are many annual reports about damaged cable terminations. For analyzing the problems, faults in two regional electricity companies are studied. At first step, damaged cable terminations are analyzed statistically and grouped according to their problems. Then, some of the damaged cable terminations are checked to classify vulnerable areas. The investigation is completed by simulation, analysis and study of equivalent circuit. Conclusions underline important points which can be helpful for reducing the damages.
Sharulnizam Mohd Mukhtar, Muzamir Isa, Azremi Abdullah Al-Hadi,
Volume 21, Issue 2 (6-2025)
Abstract
The development of advanced diagnostic tools is critical for the effective monitoring and management of electrical insulation systems. This paper presents the development of an Ultra High Frequency (UHF) sensor designed for the detection of partial discharges (PD) within high-voltage substations. The study focuses on the sensor’s technical development, encompassing design considerations, fabrication processes, and initial performance evaluations in laboratory settings. The engineering principles underlying the sensor design are detailed, including the selection of innovative materials that enhance sensitivity and frequency response. The sensor configuration is tailored to optimize the detection of PD signals, with adjustments made based on simulated PD scenarios. Initial testing results demonstrate the sensor’s capability to detect a range of PD activities, showcasing its potential effectiveness in real-world applications. The sensor's performance is analyzed through a series of controlled lab experiments, which confirm its high sensitivity and broad operational frequency range. This paper not only illustrates the technical specifications and capabilities of the newly developed UHF sensor but also discusses its practical implications for improving the reliability and efficiency of PD monitoring systems in electrical substations.
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (6-2025)
Abstract
Partial discharge (PD) is a significant concern in the operation of rotating machines such as generators and motors, as it can lead to insulation degradation over time, reducing the reliability and lifespan of the machines. To monitor PD activity, coupling capacitors (CC) are widely used as sensors for online PD detection, as they can effectively capture PD pulses in high-voltage (HV) rotating machines. The primary objective of this research is to measure and analyze PD signals using a CC sensor for HV rotating machines under varying input voltages and frequencies, following the guidelines of the IEC 60270 standard and utilizing the MPD 600 device. The experimental setup includes performing insulation resistance (IR) testing, PD calibration, and PD measurement. Additionally, this paper provides a detailed study of PD signal characteristics, specifically focusing on phase-resolved partial discharge (PRPD) patterns, to understand the behavior of PD in HV rotating machines, enhancing fault diagnosis and preventive maintenance strategies.
Ahmad Syukri Abd Rahman, Mohamad Nur Khairul Hafizi Rohani, Nur Dini Athirah Gazata, Afifah Shuhada Rosmi, Ayob Nazmi Nanyan, Aiman Ismail Mohamed Jamil, Mohd Helmy Halim Abdul Majid, Normiza Masturina Samsuddin,
Volume 21, Issue 2 (6-2025)
Abstract
Partial discharge (PD) is a critical phenomenon in electrical systems, particularly in high-voltage (HV) equipment like transformers, cables, switchgear, and rotating machines. In rotating machines such as generators and motors, PD is a significant concern as it leads to insulation degradation, potentially resulting in catastrophic failure. Effective and reliable diagnostic techniques are essential for detecting and analyzing PD to ensure the operational safety and longevity of such equipment. Various PD detection methods have been developed, including coupling capacitor (CC), high-frequency current transformer (HFCT), and ultra-high frequency (UHF) techniques, each offering unique advantages in assessing the condition of HV electrical systems. Among these, coupling capacitors have gained significant attention due to their ability to improve the accuracy, sensitivity, and efficiency of PD detection in rotating machines. This study focuses on the advancements in coupling capacitor-based techniques and their critical role in enhancing PD diagnostics for monitoring and maintaining high-voltage rotating machinery.