Search published articles


Showing 3 results for Pole Shape

A. Jabbari, M. Shakeri, S. A. Nabavi Niaki,
Volume 6, Issue 1 (3-2010)
Abstract

In the present work, an integrated method of pole shape design optimization for reduction of torque pulsation components in permanent magnet synchronous motors is developed. A progressive design process is presented to find feasible optimal shapes. This method is applied on the pole shape optimization of two prototype permanent magnet synchronous motors, i.e., 4-poles/6-slots and 4-poles-12slots.
H. Davari, Y. Alinejad-Beromi,
Volume 16, Issue 1 (3-2020)
Abstract

In this paper, at first, a 24/16 three-phase switched reluctance motor is designed, then the rotor poles shape tips corrected for reduction ripple of single-phase torque waveform. By doing this, the single-phase torque waveform has a flat surface and consequently, the single-phase torque ripple is reduced. Also, due to the commutation between the machine phases, the torque drops during this time, which are known as torque pits. To reduce the ripple torque at these points, which requires overlap between the two successive phases of the machine, the pulse width of the excitation of the machine phases is adjusted. Comparisons have been made between two types of direct current excitation and chopped current (with different pulse widths). The results show that for constant pulse width under chopped current, applying the arc and modifying the shape of the rotor poles can reduce the torque ripple by 3.4%. Also, by applying chopped current control, the torque ripple was reduced by 46.7% compared to its conventional design structure.

A. Jabbari, F. Dubas,
Volume 17, Issue 2 (6-2021)
Abstract

In this paper, we present a mathematical model for determining the optimal radius of the iron pole shape in spoke-type permanent-magnet (PM) machines (STPMM) in order to minimize the pulsating torque components. The proposed method is based on the formal resolution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative permeability effect of iron core in a subdomain model. The effect of PM width on the optimal radius of the iron pole has been investigated. In addition, for initial and optimal machines, the effect of the iron core relative permeability on the STPMM performances was studied at no-load and on-load conditions considering three certain PM widths. Moreover, the effect of iron pole shape on pulsating torque components with respect to certain values of iron core relative permeability was studied by comparing cogging torque, ripple and reluctance torque waveforms. In order to validate the results of the proposed analytical model, three motors with different PM widths were considered as case studies and their performance results were compared analytically and numerically. Two prototype spoke-type machines were fabricated and the experimental results were compared to analytical results. It can be seen that the analytical modeling results are consistent with the numerical analysis and experimental results.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.