Showing 12 results for Power System
A. Kazemi, Sh. Jadid, H. Andami,
Volume 3, Issue 1 (1-2007)
Abstract
Transmission loss allocation in very large networks with multiple interconnected
areas or countries is investigated in this paper. The main contribution is to propose a
method to calculate the amount of losses due to activity of each participant in the multi area
markets. Pricing of cross-border trades in Multi area systems is often difficult since
individual countries may use incompatible internal transmission pricing regimes, and they
are usually unwilling to disclose any sensitive information about their own systems.
A new methodology based on the loss formula concept for allocating electric losses to
generators and loads is presented in this paper. The only data required are the power flows
and characteristics of tie-lines and PV Ward equivalent model of area networks from border
nodes point of view. Proposed methodology is tested on the IEEE 118 node network which
is divided into three areas, each with a different internal transmission pricing methodology.
In the proposed methodology no information is required about individual loads, generations
or detailed internal networks. It is also shown to be simple, transparent and very fast and it
can deal effectively with multiple pricing policies.
J. Beiza, S. H. Hosseinian, B. Vahidi,
Volume 5, Issue 3 (9-2009)
Abstract
This paper presents a novel approach for fault type estimation in power systems. The Fault type estimation is the first step to estimate instantaneous voltage, voltage sag magnitude and duration in a three-phase system at fault duration. The approach is based on time-domain state estimation where redundant measurements are available. The current based model allows a linear mapping between the measured variable and the states to be estimated. This paper shows a possible for fault instance detection, fault location identification and fault type estimation utilizing residual analysis and topology error processing. The idea is that the fault status does not change measurement matrix dimensions but changes some elements of the measurement matrix. The paper addresses how to rebuilt measurement matrix for each type of faults. The proposed algorithm is shown that the method has high effectiveness and high performance for forecasting fault type and for estimating instantaneous bus voltage. The performance of the novel approach is tested on IEEE 14-bus test system and the results are shown.
M. Ghayeni, R. Ghazi,
Volume 6, Issue 4 (12-2010)
Abstract
This paper proposes an algorithm for transmission cost allocation (TCA) in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.
H. Zayyani, M. Dehghan,
Volume 11, Issue 1 (3-2015)
Abstract
This paper presents a simple and easy implementable Least Mean Square (LMS) type approach for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS type algorithm is based on a second order recursion for the complex voltage derived from Clarke's transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real parameter (not complex) which can be efficiently implemented by DSP. In unbalanced situations, simulation experiments show the advantages and drawbacks of the proposed algorithm in comparison to Complex LMS (CLMS) and Augmented Complex LMS (ACLMS) methods
H. Rajabi Mashhadi, M. A. Armin,
Volume 11, Issue 3 (9-2015)
Abstract
Utilization of wind turbines as economic and green production units, poses new challenges to the power system planners, mainly due to the stochastic nature of the wind, adding a new source of uncertainty to the power system. Different types of distribution and correlation between this random variable and the system load makes conventional method inappropriate for modeling such a correlation. In this paper, the correlation between the wind speed and system load is modeled using Copula, a mathematical tool recently used in the field of the applied science. As the effect of the correlation coefficient is the main concern, the copula modeling technique allows simulating various scenarios with different correlations. The conducted simulations in this paper reveals that the wind speed correlation with the load has significant effect on the system reliability indices, such as expected energy not served (EENS) and loss of load probability (LOLP). Moreover, in this paper the effect of the correlation coefficient on the effective load carrying capability (ELCC) of the wind turbines is analyzed, too. To perform the aforementioned simulations and analyses, the modified RBTS with an additional wind farm is used.
S. Razini, M. H. Moradi, S. M. Hosseinian,
Volume 13, Issue 1 (3-2017)
Abstract
Multi agent systems (MAS) are popularly used in practice, however; a few studies have looked at MAS capabilities from the power engineering perspective. This paper presents the results of an investigation concerning the compatibility of MAS capabilities in different power engineering categories. Five MAS capabilities and seven power system categories are established. A framework for applying MAS in power engineering is developed. A fuzzy inference system is adopted to evaluate the paper proposed framework. Two approaches, namely simulation and real, are considered for different power categories. The paper shows that MAS capabilities are generally compatible with both approaches, although compatibility of MAS with real approach is more significant. The paper concludes that in the near future MAS is anticipated to be a key important tool in the development of intelligent systems and smart grids in power system. This paper contributes to thinking on perspective of MAS in power System.
A. R. Moradi, Y. Alinejad-Beromi, K. Kiani,
Volume 13, Issue 1 (3-2017)
Abstract
Congestion and overloading for lines are the main problems in the exploitation of power grids. The consequences of these problems in deregulated systems can be mentioned as sudden jumps in prices in some parts of the power system, lead to an increase in market power and reduction of competition in it. FACTS devices are efficient, powerful and economical tools in controlling power flows through transmission lines that play a fundamental role in congestion management. However, after removing congestion, power systems due to targeting security restrictions may be managed with a lower voltage or transient stability rather than before removing. Thus, power system stability should be considered within the construction of congestion management. In this paper, a multi-objective structure is presented for congestion management that simultaneously optimizes goals such as total operating cost, voltage and transient security. In order to achieve the desired goals, locating and sizing of series FACTS devices are done with using components of nodal prices and the newly developed grey wolf optimizer (GWO) algorithm, respectively. In order to evaluate reliability of mentioned approaches, a simulation is done on the 39-bus New England network.
M. Ghayeni,
Volume 15, Issue 4 (12-2019)
Abstract
In this paper, the new approach for the transmission reliability cost allocation (TRCA) problem is proposed. In the conventional TRCA problem, for calculating the contribution of each user (generators & loads or contracts) in the reliability margin of each transmission line, the outage analysis is performed for all system contingencies. It is obvious that this analysis is very time-consuming for large power systems. This paper suggests that this calculation should be done only for major contingencies. To do this, at first, the contingency filtering technique (CFT) is introduced based on the new economic indices that quantify the severity of each contingency to determine the critical contingencies. Then the results of contingency filtering are used in the TRCA problem. The simulation results are reported for the IEEE 118-bus test system. The obtained results show that by application of CFT in TRCA problem, the simulation time is greatly reduced, but the percentage of error remains within an acceptable limit.
A. Mohammadi, S. Soleymani, B. Mozafari, H. Mohammadnezhad-Shourkaei,
Volume 17, Issue 2 (6-2021)
Abstract
This paper proposes an advanced distribution automation planning problem in which emergency-based demand response plans are incorporated during service restoration process. The fitness function of this planning problem consists of various costs associated with fault occurrence in electric distribution systems consisting of the total yearly cost of customers’ interruptions, the total annualized investment cost of control and protection devices deployment, including sectionalizing switches, circuit breakers, and fuses and the total annual cost of performing emergency-based demand response programs in the service restoration process. Moreover, the customers’ behavior in participating in the service restoration process is also modeled through using an S-function. The proposed advanced distribution automation planning method is implemented on the fourth bus of the Roy Bilinton test system in order to evaluate its efficacy. The obtained results show that the reliability indices and the total cost of distribution automation are reduced by about 9% and 12% more than the published methods for distribution automation, respectively.
F. Amiri, M. H. Moradi,
Volume 17, Issue 4 (12-2021)
Abstract
In this paper, a coordinated control method for LFC and SMES systems based on a new robust controller is designed. The proposed controller is used to compensate for frequency deviations related to the power system, to prevent excessive power generation in conventional generators during load disturbances, and to reduce power fluctuations from wind power plants. The new robust controller does not require the measurement of all the power system states and it only uses the output feedback. It also has a higher degree of freedom than the conventional robust controllers (conventional output feedback) and thus it helps improve the system control. The proposed control method is highly robust against load and distributed generation resources (wind turbine) disturbances and it is also robust against the uncertainty of the power system parameters. The proposed method is compared under several scenarios with the coordinated control method for LFC and SMES systems based on Moth Swarm Algorithm-optimized PID controller, the LFC system based on Moth Swarm Algorithm-optimized PID controller with SMES, the coordinated control method for LFC and SMES systems based on Robust Model Predictive Control, and the LFC system based on optimized PID controller without SMES and it puts on satisfactory performance. The simulation was performed in MATLAB.
Gh. Khandar-Shahabad, J. Beiza, J. Pouladi, T. Abedinzadeh,
Volume 18, Issue 3 (9-2022)
Abstract
A new regionalization algorithm is presented to improve wide-area backup protection (WABP) of the power system. This method divides the power system into several protection zones based on the proposed optimal measurement device (MD) placement and electrical distances. The modified binary particle swarm optimization is used to achieve the optimal MD placement in the first step. Next, the power system is divided into small protection zones (SPZ) using the topology matrix of the power system and MD locations. Finally, the SPZs are combined to accomplish the main protection zones and protection centers according to electrical distances, degree of buses, and communication link constraints. The introduced regionalization formulation can help provide a rapid and secure WABP for power systems. This method was applied to several IEEE standard test systems, and the simulation results demonstrated the effectiveness of the proposed scheme.
Sajal Debbarma, Dipu Sarkar,
Volume 20, Issue 0 (12-2024)
Abstract
Transmission line congestion is more severe and persistent in deregulated power systems than it is in traditionally controlled power systems. In a deregulated power market (DPM) scenario, transmission line congestion is one of the most critical problems. To guarantee the electricity system framework runs consistently and securely, the independent system operator (ISO) controls congestion. Congestion management (CM), which takes into account the inherent uncertainties of the restructured power system, is essential to the functioning and security of DPM. This article demonstrates how to control congestion with generation rescheduling. The system is designed in such a way that it helps the traders to compete and trade using the bid prices. Network security is maintained by keeping all constraints within the allowed limits via the Newton-Raphson load flow. An innovative Cheetah Optimizer is employed to handle the congestion management challenge. The weighted sum approach is used instead of multi-objective optimization to simplify the problem as a single-objective optimization and solve the issue for multiple instances of congestion and tested in an IEEE 30 bus system. The MATLAB software serves as a tool for modelling the full process, and the results acquired with Cheetah optimiser give better results than the conventional optimisation technique.