Showing 3 results for Ring Resonator
A. Bijari, S. H. Keshmiri , W. Wanburee,
Volume 8, Issue 1 (3-2012)
Abstract
This paper presents a nonlinear analytical model for micromechanical silicon ring resonators with bulk-mode vibrations. A distributed element model has been developed to describe the dynamic behavior of the micromechanical ring resonator. This model shows the nonlinear effects in a silicon ring resonator focusing on the effect of large amplitudes around the resonance frequency, material and electrical nonlinearities. Through the combination of geometrical and material nonlinearities, closed-form expressions for third-order nonlinearity in mechanical stiffness of bulk-mode ring resonators are obtained. Using the perturbation method and the method of harmonic balance, the expressions for describing the effect of nonlinearities on the resonance frequency and stability are derived. The results, which show the effect of varying the AC drive voltage, initial gap, DC applied voltage and the quality factor on the frequency response and resonant frequencies, are discussed in detail. The nonlinear model introduces an appropriate method in the field of bulk-mode ring resonator design for achieving sufficient power handling and low motional resistance.
M. Janipour, M. A. Karami, A. Zia,
Volume 12, Issue 2 (6-2016)
Abstract
A four port network adder-subtractor module, for surface plasmon polariton (SPP) waves based on a ring resonator filter is proposed. The functionality of module is achieved by the phase difference manipulation of guided SPPs through different arms connected to the ring resonator. The module is designed using the concepts of a basic two-port device proposed in this paper. It is shown that two port network eliminates odd, and transmits even SPP modes of a single source. Moreover, in the case of four-port adder (with two individual sources), it is elucidated that according to the location of each output port, one can achieve the consequent added or subtracted outputs, correspondingly. Two distinct peaks are observed in the transmission spectrum of adder and subtractor outputs, where increasing the individual source phase difference, leads to a red shift in the adder output, and a blue shift in the subtractor output peaks. The proposed module can be used as the building block for implementing arithmetic operations in plasmonic integrated circuits. The transmission line theory verifies the numerical simulation results, and demonstrates the functionality of the adder/subtractor module.
M. Hajebi, M. Danaeian, E. Zarezadeh,
Volume 13, Issue 3 (9-2017)
Abstract
Using composite right-left handed (CRLH) transmission line concept, a novel miniaturized dual notch band filter (DNBF) is proposed. The suggested DNBF consists of an interdigital transmission line (ITL), split ring resonators (SRRs) and complementary split ring resonators (CSRRs). Since the resonance frequency of the SRRs and CSRRs are quite independent of each other, the dual notch bands of the proposed filter can be separately controlled and shifted by changing the dimension of the SRRs and CSRRs. In this paper, the reject bands are designed for WLAN (2.4 GHz) and WiMAX (3.5 GHz) to reject these frequency bands from the ultra-wide band communication systems. The simulation results show that the transmission response has more than 32 dB rejections near each band. To validate the design concept, the proposed NBPF has been fabricated and tested. Experimental verification is provided and good agreement has been found between simulation and measurement. To the best of our knowledge, the proposed NBPF is more compact in comparison with other reported filters.